SYMMETRY, REFLECTION AND ROTATION

1. Draw the line or lines of symmetry.

(i)

(ii)

(iii)

(iv)

(v)

(i) (one)

(ii) (none)

(iii) (one)

(iv) (one)

2. If possible, draw the largest number of lines of symmetry in each case :

(i)

(ii)

(iv)

(v)

(iv)
3. Examine each of the following figures, carefully, and then draw line of symmetry if possible :

(i)

Math Class VIII

(ii)

(iii)

(iv)

Question Bank

STUDY - ASSESS - EXCEL
Ans.(i) The figure has no line of symmetry.
(ii)

The figure has one line of symmetry.
(iii)

The figure has 3 lines of symmetry.
(iv)

The figure has one line of symmetry.
(v)

The figure has two lines of symmetry.

STUDY - ASSESS - EXCEL
4. Draw all lines of symmetry for each of the following letters.

(i)

(v)

(iii)

(vii)

Ans. (i)

One line of symmetry.
(iii)

No line of symmetry.

Two lines of symmetry

One line of symmetry.
(ii)

One line of symmetry.
(iv)

No line of symmetry.

one line of symmetry.

One line of symmetry.
5. Mark two points P and Q which are 5.3 cm apart. Construct the perpendicular bisector of line segment $P Q$.

Are the points P and Q symmetric with respect to the perpendicular bisector drawn?

Ans.

P and Q are symmetric with respect to perpendicular bisector $x y$.
6. Find the co-ordinates of the following points under reflection in x axis :
(i) $(4,8)$
(ii) $(3,-10)$
(iii) $(-2,0)$
(iv) $(-2,-4)$

Ans.Required point are :
(i) $(4,-8)$
(ii) $(3,10)$
(iii) $(-2,0)$
(iv) $(-2,4)$
7. Find the reflection of the following points in y-axis:
(i) $(9,10)$
(ii) $(9,0)$
(iii) $(0,9)$
(iv) $(-9,10)$
(v) $(9,-10)$
(vi) $(-9,-10)$

Ans. (i) $(-9,10)$
(ii) $(-9,0)$
(iii) $(0,9)$
(iv) $(9,10)$
(v) $(-9,-10) \quad$ (vi) $(9,-10)$
8. Construct an angle $\angle \mathrm{PQR}=80^{\circ}$. Draw its line of symmetry if PQ $=\mathrm{QR}=6.5 \mathrm{~cm}$.

Ans.Steps of Constructions :

(i) First we draw a line segment $\mathrm{PQ}=$ 6.5 cm
(ii) With Q as a centre draw a ray making an angle of 80° and cut off $\mathrm{QR}=$ 6.5 cm and join PR.

(iii) Draw the angle bisector of $\angle \mathrm{PQR}$. This is the required line of symmetry.
9. State and explain the types of symmetry possessed by each of the following figures.

(i)

(ii)

(v)

(iii)

(vi)

Ans. (i) (a) From figure it is not a linear symmetry because it has no line of symmetry.
(b) From figure its a point symmetry because it has point O which is the centre of symmetry.
(c) From figure it is a rotational symmetry because it has rotational symmetry of order 3 above the point O.
(ii) (a) From figure it is a linear symmetry because it has two lines of symmetry.
i.e., The line joining C and H and the line joining the mid points of $A J$ and $E F$.
(b) From figure it is a point symmetry because it has point O which is the point of symmetry.
(c) From figure it is a point symmetry because it has rotational symmetry of order 2 about the point O.
(iii) (a) From figure it is not a linear symmetry because it has no line of symmetry.
(b) From figure it is a point symmetry because point O is the point of symmetry.
(c) From figure it is a rotational symmetry because it has rotational symmetry of order 2 about the point O.
(iv) (a) From figure it is a linear symmetry because three lines of symmetry which are the lines joining $A D, B E$ and $C F$.
(b) From figure it is not a point symmetry because it has no point symmetry.
(c) From figure it is a rotational symmetry because it has a rotational symmetry of order three about the point O.
(v) (a) From figure it is not a linear symmetry because it has no line of symmetry.
(b) From figure it is not a point symmetry because it has no point of symmetry.
(c) From figure it is a rotational symmetry because it has a rotational symmetry of order 3 about the point O.
(vi) (a) From figure it is not a linear symmetry because it has no line of symmetry.
(b) From figure it is a point symmetry because at O, the point symmetry.
(c) From figure it is a rotational symmetry it has a rotational symmetry order 2 about the point O.
10. The point $P(a, b)$ is reflected is x-axis and the point P^{\prime} so obtained is reflected in y-axis to get the point $P^{\prime \prime}$. If the co-ordinate of $P^{\prime \prime}$ are $(-5,-$ 3), find the values of a and b.
Ans. The point $P(a, b)$ when reflected in x-axis, will be $P^{\prime}(a,-b)$ and when point $P^{\prime}(a,-b)$ is reflected in y-axis, will be $P^{\prime \prime}(-a,-b)$
MS is the only line of symmetry of $\triangle P Q R$.

11. Construct a triangle $X Y Z$ in which $X Y=Y Z=Z X=4.5 \mathrm{~cm}$. Draw all its lines of symmetry.

Ans.
$P Q, R S$ and $A B$ are three lines of symmetry passing through midpoints of sides of triangle.

12. Construct a triangle $P Q R$ in which $P Q=Q R=4.2 \mathrm{~cm}$ and $\angle P Q R=90^{\circ}$. Draw all its lines of symmetry.

Ans.

O is mid point of $P R$.
The figure is isosceles right triangle. It has only one line of symmetry $X Y$ passing through mid-point of $P R$.

13. Mark two points A and $B 6.4 \mathrm{~cm}$ apart. Construct the line of symmetry so that the points A and B are symmetric with respect to this line.
Ans.Draw perpendicular bisector $X Y$ of $A B$, bisecting $A B$ at O.
Thus, $X Y$ is the line of symmetry.

14. Construct a triangle $A B C$ such that $A B=5.2 \mathrm{~cm}, B C=4.5 \mathrm{~cm}$ and $\angle B=60^{\circ}$. Rotate the triangle $A B C$ through 45° (anti-clockwise) about the point A. Are the two triangles congruent ?
Ans.

Yes, $\triangle A B C$ and $\Delta A^{\prime} B^{\prime} C^{\prime}$ are congruent.
15. Plot the points $P(2,-5)$ and $Q(3,7)$ on the graph paper. Reflect the line segment $P Q$ in the y-axis to $P^{\prime} Q^{\prime}$. Write down the coordinates of P^{\prime} and Q^{\prime}. Are $P Q$ and $P^{\prime} Q^{\prime}$ equal ?

Ans.

Yes, both $P Q$ and $P^{\prime} Q^{\prime}$ are equal.
16. The triangle $A B C$ whose vertices are $A(2,-3), B(3,4)$ and $C(0$, $5)$ is reflected in the y-axis to the triangle $A^{\prime} B^{\prime} C^{\prime}$. Write down the
coordinates of the vertices of triangle $A^{\prime} B^{\prime} C^{\prime}$. Are the two triangles congruent?
Ans. $A(2,-3), B(3,4)$ and $C(0,5)$
The vertices of triangle are reflected in y-axis.

$$
\therefore \quad A^{\prime}(-2,-3) B^{\prime}(-3,4) C^{\prime}(0,5)
$$

$\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ both are congruent.
17. A point $P(2,6)$ is rotated about the origin through 180° to the point P^{\prime}, write down the coordinates of P^{\prime} graphically.

Ans.

18. Plot the points $P(-2,5)$ and $Q(3,-7)$ on the graph paper. Rotate the line segment $P Q$ through 180° about the origin to the position $P^{\prime} Q^{\prime}$. Write down the coordinates of P^{\prime} and Q^{\prime}. Are $P Q$ and $P^{\prime} Q^{\prime}$ equal?

Ans.

Both $P Q$ and $P^{\prime} Q^{\prime}$ are equal.
19. Plot the points $A(3,-4)$ and $B(-5,-2)$ on the graph paper. Rotate the line segment $A B$ through 90° clockwise about the origin to the position $A^{\prime} B^{\prime}$. Write down the coordinates of A^{\prime} and B^{\prime}. Are $A B$ and $A^{\prime} B^{\prime}$ equal?

Ans.

Also, $A B=A^{\prime} B^{\prime}$.
20. Plot the points $A(2,-3), B(-1,2)$ and $C(0,-2)$ on the graph paper. Reflect the triangle $A B C$ in the x-axis to the triangle $A^{\prime} B^{\prime} C^{\prime}$. Write down the coordinates of the vertices of $\Delta A^{\prime} B^{\prime} C^{\prime}$. Are the two triangles congruent?
Ans.Co-ordinates of $\Delta A^{\prime} B^{\prime} C^{\prime}$ are $A^{\prime}(2,3) \quad B^{\prime}(-1,-2) C^{\prime}(0,2)$

Yes $\triangle A B C \& \Delta A^{\prime} B^{\prime} C^{\prime}$ are congruent.
21. Plot the points $A(3,-4)$ and $B(2,5)$ on the graph paper. Rotate the triangle $O A B$ through 180° about O (origin). Find the coordinates of the vertices of this new triangle.

So co-ordinate of vertices of new triangle $O A^{\prime} B^{\prime}$ are $(0,0)(-3,4)$ Math Class VIII
$(-2,-5)$

STUDY - ASSESS - EXCEL
22. Plot the points $P(-2,3)$ and $Q(4,-7)$ on the graph paper. Rotate the line segment $P Q$ through 90° anti-clockwise about the origin to the position $P^{\prime} Q^{\prime}$. Write down the coordinates of P^{\prime} and Q^{\prime}.
Ans.

Co-ordinates of P^{\prime} and Q^{\prime} are $(-3,-2)$ and $(7,4)$
23. Plot the points $A(3,0), B(1,3), C(-4,2) D(-3,-2)$ and $E(1,-4)$ on the graph paper. Rotate the pentagon $A B C D E$ through 90° anticlockwise about the origin to take the position $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$. Write down the coordinates of the vertices of the pentagon in new position.
Ans.Coordinates of $A^{\prime}(0,3), \quad B^{\prime}(-3,1), \quad C^{\prime}(-2,-4), \quad D^{\prime}(2,-3)$, $E^{\prime}(4,1)$.

24. The point $Q(a, b)$ is reflected is y-axis and the point Q^{\prime} so obtained is reflected in x-axis to get the point $Q^{\prime \prime}$. If the coordinates of $Q^{\prime \prime}$ are $(4,-2)$, find the values of a and b.
Ans. The point $Q(a, b)$ when reflected in y-axis will be $Q^{\prime}(-a, b)$ and point $Q^{\prime}(-a, b)$ when reflected in x-axis will be $Q^{\prime \prime}(-a,-b)$. But co-ordinates of $Q^{\prime \prime}$ are $(4,-2)$

$$
\begin{array}{lll}
\therefore-a=4 & \Rightarrow & a=-4 \\
\text { and }-b=-2 & \Rightarrow & b=2
\end{array}
$$

25. Draw the image figure of the line segment $A B$ reflected in x-axis, the co-ordinates of A and B being $A(-3,4)$ and $B(4,5)$.
Ans.Co-ordinates of $A(-3,4)$ and $B(4,5)$ of the line $A B$. When it is reflected in x-axis then the image of $A B$ will be $A^{\prime} B^{\prime}$ and coordinates of A^{\prime} will be $(-3,-4)$ and B^{\prime} will be $(4,-5)$.

26. $\triangle A B C$ with points $A(2,-3), B(4,-1)$ and $C(3,-4)$ is first reflected in x-axis to give $\Delta A^{\prime} B^{\prime} C^{\prime}$ and then this $\Delta A^{\prime} B^{\prime} C^{\prime}$ is reflected in y-axis to give $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. Find the co-ordinates of $A^{\prime \prime}$, $B^{\prime \prime}$ and $C^{\prime \prime}$.

Ans.In $\triangle A B C$

$$
A(2,-3), B(4,-1) \text { and } C(3,-4)
$$

Now, it is reflected in x-axis then $\Delta A^{\prime} B^{\prime} C^{\prime}$ is formed
and $A^{\prime}(2,3), B^{\prime}(4,1)$ and $C^{\prime}(3,4)$
Now it is reflected in y-axis and $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is formed
and coordinate $A^{\prime \prime}(-2,3), B^{\prime \prime}(-4,1)$ and $C^{\prime \prime}(-3,4)$
27. A square $P Q R S$ with the vertices $P(-1,5), Q(-5,5), R(-5,1)$ and $S(-1,1)$ is first reflected in x-axis and the image so obtained is reflected in y-axis. Find the vertices of the final image so formed.
Ans. The coordinates of the vertices of square $P Q R S$ are $P(-1,5)$, $Q(-5,5), R(-5,1)$ and $S(-1,1)$

When it is reflected in x-axis, the image of $P Q R S$ will be $P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$ and their co-ordinates will be $P^{\prime}(-1,-5), Q^{\prime}(-5,-5), R^{\prime}(-5,-1)$ and $S^{\prime}(-1,-1)$ and when it is again reflected in y-axis, the image will be $P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime} S^{\prime \prime}$ and their co-ordinates will be $P^{\prime \prime}(1,-5)$, $Q^{\prime \prime}(5,-5), R^{\prime \prime}(5,-1)$ and $S^{\prime \prime}(1,-1)$.
28. A rectangle $A B C D$ with its vertices at $A(-2,-3), B(2,-3)$, $C(2,3)$ and $D(-2,3)$ is rotated about the origin through 90° anticlockwise to take the new position $P Q R S$. Find the co-ordinates of P, Q, R and S and draw the new figure.
Ans.Given in rectangle $A B C D, A(-2,-3), B(2,-3), C(2,3)$ and $D(-2,3)$ is rotated through 90° anticlockwise then $P Q R S$ rectangle is formed, then $P(3,-2), Q(3,2), R(-3,2)$ and $S(-3,-2)$.

29. A quadrilateral $A B C D$ with its vertices at $A(4,2), B(-1,4), C(-$ $2,-3)$ and $D(4,0)$ is rotated through 90° clockwise to take the new position $L M N Q$. Find the coordinates of L, M, N and Q and draw the new figure.
Ans. Given a quadrilateral $A B C D$ with its vertices $A(4,2), B(-1,4), C$ $(-2,-3)$ and $D(4,0)$ is rotated through 90° clockwise then quadrilateral $L M N Q$ is formed.
Then, coordinates of $L(2,-4), M(4,1), N(-3,2)$ and $Q(0,-4)$

30. A $\triangle A B C$ has its vertices at $A(1,0), B(3,2)$ and $C(2,4)$. This triangle is rotated about the origin through 180° to take the position $A^{\prime} B^{\prime} C^{\prime}$. Find the co-ordinates of A^{\prime}, B^{\prime} and C^{\prime}. Show the new figure on the graph paper.

Ans. The triangle $A B C$ whose vertices are $A(1,0), B(3,2)$ and $C(2,4)$ is rotated about the origin through 180°, then the co-ordinates of the image of $\triangle A B C$ will be $A^{\prime} B^{\prime} C^{\prime}$ and co-ordinates will be $A^{\prime}(-1,0), B^{\prime}(-3,-2)$ and $C^{\prime}(-2,-4)$.

31. Construct the image of $\triangle A B C$ under a rotation about the origin O through 180°, the vertices of the triangle being at $A(3,-2), B(3$, $2)$ and $C(-2,3)$.
Ans. The image of $\triangle A B C$ under rotation about the origin O through 180°, will be $\Delta A^{\prime} B^{\prime} C^{\prime}$. The co-ordinates of A^{\prime} will be $(-3,2)$, of $B^{\prime}(-3,-2)$ and $C^{\prime}(2,-3)$.

