RATIONAL AND **IRRATIONAL NUMBERS** - Q.1. Without actual division find which of the following rationals are terminating decimal: (i) $\frac{9}{25}$ (ii) $\frac{7}{12}$ (iii) $\frac{121}{125}$ (iv) $\frac{37}{78}$ Ans. (i) In $\frac{9}{25}$, the prime factors of denominator 25 are 5, 5. Thus it is terminating decimal. - (ii) In $\frac{7}{12}$, the prime factors of denominator 12 are 2, 2 and 3. Thus it is not terminating decimal. - (iii) In $\frac{121}{125}$, the prime factors of denominator 125 are 5, 5 and 5. Thus it is terminating decimal. - (iv) In $\frac{37}{78}$, the prime factors of denominator 78 are 2, 3 and 13. Thus it is not terminating decimal. - Q.2. Represent each of the following as a decimal number. - (i) $\frac{4}{15}$ (ii) $2\frac{5}{12}$ (iii) $5\frac{31}{55}$ **Ans.** (i) In $\frac{4}{15}$, using long division method: $$\begin{array}{r} 0.266...\\ 15) 4.0000\\ \underline{30}\\ 100\\ \underline{90}\\ 100\\ \underline{90}\\ \underline{10} \end{array}$$ Hence, $\frac{4}{15} = 0.266... = 0.2\overline{6}$. (iv) In $5\frac{31}{55}$, using long division method: (iii) In $2\frac{5}{12}$, using long division method: $$\begin{array}{c} 12 \\ 0.4166... \\ 12)5.000 \\ \underline{48} \\ 20 \\ \underline{12} \\ 80 \\ \underline{72} \underline{330} \\ 200 \\ \underline{165} \\ 350 \\ \underline{330} \\ 200 \\ \underline{165} \\ 350 \\ \underline{330} \\ 200 \\ \underline{165} \\ 350 \\ \underline{330} \\ 200 \\ \underline{165} \\ 35 \\ \underline{350} \\ 200 \\ \underline{165} \\ 35 \\ \underline{35} \\ 165 165 \\ \underline{35} 165 \\ \underline{35} \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\$$ Express each of the following as a rational number in the form of $\frac{p}{a}$, where $q \neq 0$. (i) $$0.\overline{6}$$ (ii) $$0.\overline{43}$$ (iii) $$0.2\overline{27}$$ (iv) $$0.2\overline{104}$$ **Ans.** (i) Let $$x = 0.\overline{6} = 0.6666$$...(i) Multiplying both sides of eqn. (i) by 10, we get $$10x = 6.6666$$...(ii) $$10x = 6.6666$$ $$x = 0.6666$$ $$9x = 6$$ $\Rightarrow x = \frac{6}{9} = \frac{2}{3}$ Hence, required fraction $= \frac{2}{3}$. (ii) Let $$x = 0.\overline{43} = 0.43434343$$...(i) Multiplying both sides of eqn. (i) by 100, we get 100x = 43.434343 Subtracting eqn. (i) from eqn. (ii), we get $$100x = 43.434343$$ $$x = 0.434343$$ $$99x = 43 \qquad \Rightarrow 99x = 43 \Rightarrow x = \frac{43}{99}$$ Hence, required fraction $\frac{p}{q} = \frac{43}{99}$. (iii) Let $$x = 0.2\overline{27} = 0.2272727...$$...(i) Multiplying both sides of eqn. (i) by 10, we get $$10x = 2.272727...$$...(ii) Multiplying both sides of eqn. (ii) by 100, we get $$1000x = 227.272727...$$...(iii) Subtracting eqn. (ii) from (iii), we get 1000x = 227.272727... $$10x = 2.272727...$$ $$990x = 225$$ $\Rightarrow 990x = 225$ $\Rightarrow x = \frac{225}{990} = \frac{5}{22}$ Hence, required fraction $\frac{p}{q} = \frac{5}{22}$. (iv) Let $$x = 0.2\overline{104} = 0.2104104104...$$...(i) Multiplying both sides of eqn. (i) by 10, we get $$10x = 2.104104104...$$...(ii) Multiplying both sides of eqn. (ii) by 1000, we get $$10000x = 2104.104104104...$$...(iii) Subtracting eqn. (ii) from (iii), we get $$10000x = 2104.104104104$$ $$10x = 2.104104104$$ 9990 $$x = 2102$$ \Rightarrow 9990 $x = 2102$ \Rightarrow $x = \frac{2102}{9990} = \frac{1051}{4995}$ Hence, required fraction = $\frac{1051}{4995}$. #### Q.4. Express each of the following as a vulgar fraction. (i) $$3.\overline{146}$$ **Ans.** Let $$x = 3.\overline{146} = 3.146146$$ Multiplying both sides of eqn. (i) by 1000, we get $$1000x = 3146.146146146$$...(ii) Subtracting eqn. (i) from eqn. (ii), we get $$1000x = 3146.146146146$$ $$x = 3.146146146$$ $$999x = 3143$$ $$\Rightarrow 999x = 3143 \Rightarrow x = \frac{3143}{999}$$ Hence, required vulgar fraction = $\frac{3143}{999}$. (ii) Let $$x = 4.3\overline{24} = 4.324242424$$...(i) Multiplying both sides of eqn. (i) by 10, we get $$10x = 43.24242424$$...(ii) Multiplying both sides of eqn. (ii) by 100, we get $$1000x = 4324.24242424$$...(iii) Subtracting eqn. (ii) from eqn. (iii), we get $$1000x = 4324.24242424$$ $$10x = 43.24242424$$ $$990x = 4281 \qquad \Rightarrow 990x = 4281 \Rightarrow x = \frac{4281}{990} = \frac{1427}{330}$$ Hence, required vulgar fraction = $\frac{1427}{330}$. #### Q.5. Insert one rational number between: (i) $$\frac{3}{5}$$ and $\frac{7}{9}$ (ii) 8 and 8.04 **Ans.** If a and b are two rational numbers, then between these two numbers, one rational number will be $\frac{(a+b)}{2}$. Required rational number between $\frac{3}{5}$ and $\frac{7}{9}$ $$= \frac{1}{2} \left(\frac{3}{5} + \frac{7}{9} \right) = \frac{1}{2} \left(\frac{27 + 35}{45} \right) = \frac{1}{2} \times \frac{62}{45} = \frac{31}{45} : \frac{3}{5} < \frac{31}{45} < \frac{7}{9}.$$ (ii) Required rational number between 8 and 8.04 $$= \frac{1}{2}(8+8.04) = \frac{1}{2}(16.04) = 8.02 \quad \therefore \quad 8 < 8.02 < 8.04$$ # Q.6. Insert two rational numbers between $\frac{3}{4}$ and $1\frac{1}{5}$ Ans. $$\frac{3}{4}$$ and $1\frac{1}{5} \Rightarrow \frac{3}{4}$ and $\frac{6}{5} \Rightarrow \frac{3}{4} < \frac{1}{2} \left(\frac{3}{4} + \frac{6}{5} \right) < \frac{6}{5} \Rightarrow \frac{3}{5} < \frac{1}{2} \left(\frac{15 + 24}{20} \right) < \frac{6}{5}$ $$\Rightarrow \frac{3}{4} < \frac{1}{2} \left(\frac{39}{20} \right) < \frac{6}{5} \Rightarrow \frac{3}{4} < \frac{39}{40} < \frac{6}{5}$$ $$\Rightarrow \frac{3}{4} < \frac{39}{40} < \frac{1}{2} \left(\frac{39}{40} + \frac{6}{5} \right) < \frac{6}{5} \Rightarrow \frac{3}{4} < \frac{39}{40} < \frac{1}{2} \left(\frac{39 + 48}{40} \right) < \frac{6}{5}$$ $$\Rightarrow \frac{3}{4} < \frac{39}{40} < \frac{1}{2} \left(\frac{87}{40} \right) < \frac{6}{5} \Rightarrow \frac{3}{4} < \frac{39}{40} < \frac{87}{80} < \frac{6}{5}$$ Hence, required rational numbers are $\frac{39}{40}$ and $\frac{87}{80}$. #### Q.7. Insert three rational numbers between (ii) $$\frac{1}{2}$$ and $\frac{3}{5}$ (iv) $$2\frac{1}{3}$$ and $3\frac{2}{3}$ (v) $$-\frac{1}{2}$$ and $\frac{1}{3}$ **Ans.** (i) The given numbers are 4 and 5. As $$4 < 5$$ $$\Rightarrow 4 < \frac{1}{2} \left(\frac{4+5}{1} \right) < 5 \Rightarrow 4 < \frac{9}{2} < 5$$ $$\Rightarrow 4 < 4.5 < 5 \qquad \dots(i)$$ Again, $$4 < \frac{1}{2} \left(4 + \frac{9}{2} \right) < \frac{9}{2}$$ $$\Rightarrow$$ 4 < 4.25 < 4.5 ...(ii) Again, $$4.5 < 5 \Rightarrow 4.5 < \frac{1}{2}(4.5+5) < 5 \Rightarrow 4.5 < 4.75 < 5$$...(iii) : From eqn. (i), (ii) and (iii), we get 4 < 4.25 < 4.5 < 4.75 < 5. Thus, required rational numbers between 4 and 5 are 4.25, 4.75 and 4.5. (ii) The given numbers are $\frac{1}{2}$ and $\frac{3}{5}$ As, $$\frac{1}{2} < \frac{3}{5} \Rightarrow \frac{1}{2} < \frac{1}{2} \left(\frac{1}{2} + \frac{3}{5}\right) < \frac{3}{5} \Rightarrow \frac{1}{2} < \frac{1}{2} \left(\frac{5+6}{10}\right) < \frac{3}{5}$$ $$\Rightarrow \frac{1}{2} < \frac{1}{2} \left(\frac{11}{10}\right) < \frac{3}{5} \Rightarrow \frac{1}{2} < \frac{11}{20} < \frac{3}{5}$$ Again, $$\frac{1}{2} < \frac{1}{2} \left(\frac{1}{2} + \frac{11}{20} \right) < \frac{3}{5} \implies \frac{1}{2} < \frac{1}{2} \left(\frac{21}{20} \right) < \frac{3}{5}$$ $$\frac{1}{2} < \frac{21}{40} < \frac{3}{5}$$...(ii) Again, $$\frac{11}{20} < \frac{3}{5} \Rightarrow \frac{11}{20} < \frac{1}{2} \left(\frac{11}{20} + \frac{3}{5} \right) < \frac{3}{5} \Rightarrow \frac{1}{2} < \frac{1}{2} \left(\frac{23}{20} \right) < \frac{3}{5}$$ $$\Rightarrow \frac{1}{2} < \frac{23}{40} < \frac{3}{5} \qquad \dots (iii)$$ From eqn. (i), (ii) and (iii), we get $$\frac{1}{2} < \frac{21}{40} < \frac{11}{20} < \frac{23}{40} < \frac{3}{15}$$ Thus, required rational numbers between $\frac{1}{2}$ and $\frac{3}{5}$ are $\frac{21}{40}$, $\frac{11}{20}$ and $\frac{23}{40}$. (iii) The given numbers are 4 and 4.5 As $$4 < 4.5 \Rightarrow 4 < \frac{1}{2}(4+4.5) < 4.5$$ $$\Rightarrow 4 < 4.25 < 4.5 \qquad \dots (i)$$ $$\Rightarrow 4 < \frac{1}{2}(4+4.25) < 4.25 \Rightarrow 4 < 4.125 < 4.25$$...(ii) Again, 4.25 < 4.5 $$\Rightarrow 4.25 < \frac{1}{2}(4.25 + 4.5) + 4.5 \Rightarrow 4.25 < 4.375 < 4.5$$...(iii) From eqn. (i), (ii) and (iii), we have 4 < 4.125 < 4.25 < 4.375 < 4.5 Thus, required rational numbers between 4 and 4.5 are 4.125, 4.25 and 4.375. (iv) The given numbers are $2\frac{1}{3}$ and $3\frac{2}{3}$ i.e., $\frac{7}{3}$ and $\frac{11}{3}$. As $$\frac{7}{3} < \frac{11}{3} \Rightarrow \frac{7}{3} < \frac{1}{2} \left(\frac{7}{3} + \frac{11}{3} \right) < \frac{11}{3}$$ $\Rightarrow \frac{7}{3} < \frac{1}{2} \left(\frac{18}{3} \right) < \frac{11}{3} \Rightarrow \frac{7}{3} < \frac{18}{6} < \frac{11}{3}$ $\Rightarrow \frac{7}{3} < 3 < \frac{11}{3}$...(i) Again, $$\frac{7}{3} < \frac{1}{2} \left(\frac{7}{3} + \frac{3}{1} \right) < 3$$ $\frac{7}{3} < \frac{8}{3} < 3$...(ii) Again, $3 < \frac{11}{3}$ $$3 < \frac{1}{2} \left(3 + \frac{11}{3} \right) < \frac{11}{3} \Rightarrow 3 < \frac{1}{2} \left(\frac{20}{3} \right) < \frac{11}{3}$$ $$3 < \frac{10}{3} < \frac{11}{3} \qquad \dots(iii)$$ From eqn. (i), (ii) and (iii), we get $$\frac{7}{3} < \frac{8}{3} < 3 < \frac{10}{3} < \frac{11}{3}$$. Thus required rational numbers between $2\frac{1}{3}$ and $3\frac{2}{3}$ i.e., $\frac{7}{3}$ and $\frac{11}{3}$ are $\frac{8}{3}$, 3 and $\frac{10}{3}$. Q.8. Find the decimal representation of $\frac{1}{7}$ and $\frac{2}{7}$. Deduce from the decimal representation of $\frac{1}{7}$, without actual calculation, the decimal representation of $\frac{3}{7}$, $\frac{4}{7}$, $\frac{5}{7}$ and $\frac{6}{7}$. **Ans.** Decimal representation of $\frac{1}{7}$ using long division method. $$\frac{0.142871}{7)1.000000}$$ Thus decimal representation of $\frac{1}{7} = 0.\overline{142857}$ $$\frac{7}{30}$$ $$\Rightarrow \text{ Decimal representation of } \frac{2}{7} = 2 \times \frac{1}{7} = 2 \times 0.\overline{142857} = 0.\overline{285714}$$ $$\frac{28}{20}$$ $$\Rightarrow \text{ Decimal representation of } \frac{3}{7} = 3 \times \frac{1}{7} = 3 \times 0.\overline{142857} = 0.\overline{428571}$$ $$\frac{14}{60}$$ $$\Rightarrow \text{ Decimal representation of } \frac{4}{7} = 4 \times \frac{1}{7} = 4 \times 0.\overline{142857} = 0.\overline{571428}$$ $$\Rightarrow \text{ Decimal representation of } \frac{5}{7} = 5 \times \frac{1}{7} = 5 \times 0.\overline{142857} = 0.\overline{714285}$$ $$\Rightarrow \text{ Decimal representation of } \frac{5}{7} = 5 \times \frac{1}{7} = 5 \times 0.\overline{142857} = 0.\overline{714285}$$ $$\Rightarrow \text{ Decimal representation of } \frac{6}{7} = 6 \times \frac{1}{7} = 6 \times 0.\overline{142847} = 0.\overline{857142}$$ $$\Rightarrow \text{ Decimal representation of } \frac{6}{7} = 6 \times \frac{1}{7} = 6 \times 0.\overline{142847} = 0.\overline{857142}$$ #### Q.9. State, whether the following numbers are rational or irrational: (i) $$(2+\sqrt{2})^2$$ (ii) $$(5+\sqrt{5})(5-\sqrt{5})$$ **Ans.** (i) $$(2+\sqrt{2})^2 = 4+2+2\times2\times\sqrt{2} = 6+4\sqrt{2}$$ Hence, it is an irrational number. (iii) $$(5+\sqrt{5})(5-\sqrt{5}) = (5)^2 - (\sqrt{5})^2$$ [Using $(a+b)(a-b) = a^2 - b^2$] = $25-5=20$ Hence, it is a rational number. #### Q.10. Given universal set = $$\{-6, -5\frac{3}{4}, -\sqrt{4}, -\frac{3}{5}, -\frac{3}{8}, 0, \frac{4}{5}, 1, 1\frac{2}{3}, \sqrt{8}, 3.01, \pi, 8.47\}$$ From the given set find: - (i) Set of rational numbers - (ii) Set of irrational numbers - (iii) Set of integers - (iv) Set of non-negative integers Ans. The given universal set is $$\{-6, -5\frac{3}{4}, -\sqrt{4}, -\frac{3}{5}, -\frac{3}{8}, 0, \frac{4}{5}, 1, 1\frac{2}{3}, \sqrt{8}, 3.01, \pi, 8.47\}$$ (i) Set of rational numbers = $$\{-6, -5\frac{3}{4}, -\sqrt{4}, -\frac{3}{5}, -\frac{3}{8}, 0, \frac{4}{5}, 1, 1\frac{2}{3}, 3.01, 8.47\}$$ - (ii) Set of irrational numbers = $\{\sqrt{8}, \pi\}$ - (iii) Set of integers = $\{-6, -\sqrt{4}, 0, 1\}$ - (iv) Set of non-negative integers = $\{0, 1\}$ # Q.11. Use division method to show that $\sqrt{3}$ and $\sqrt{5}$ are irrational numbers. **Ans.** $$\sqrt{3} = 1.73205...$$ | | 1.73205 | |--------|------------------| | 1 | 3.00 00 00 00 00 | | | 1 | | 27 | 200 | | | 189 | | 343 | 1100 | | | 1029 | | 3462 | 7100 | | | 6924 | | 346405 | 1760000 | | | 1732025 | | | 28975 | | _ | • | It is non-terminating and non-recurring decimals. \therefore $\sqrt{3}$ is an irrational number. $\sqrt{5} = 2.2360679...$ | 2.2360679 | | |-----------|---------------------| | 2 | 5.00 00 00 00 00 00 | | | 1 | | 42 | 100 | | | 84 | | 443 | 1600 | | | 1329 | | 4466 | 27100 | | | 26796 | | 447206 | 3040000 | | | 2683236 | | 4472127 | 35676400 | | | 31304889 | | 44721349 | 437151100 | | | 402492141 | | | 34658959 | It is non terminating and non recurring decimals. $\therefore \sqrt{5}$ is an irrational number. ### Q.14. Show that $\sqrt{5}$ is not a rational number. **Ans.** Let $\sqrt{5}$ is a rational number and let $\sqrt{5} = \frac{p}{q}$. Where p and q have no common factor and $q \neq 0$. Squaring both sides, we get $$(\sqrt{5})^2 = \left(\frac{p}{q}\right)^2 = 5 = \frac{p^2}{q^2} \Rightarrow p^2 = 5q^2$$...(i) $\Rightarrow p^2$ is a multiple of 5 $\Rightarrow p$ is also multiple of 5 Let p = 5m for some positive integer m. $$p^2 = 25m^2$$...(ii) From eqn. (i) and (ii), we get $5q^2 = 25m^2 \implies q^2 = 5m^2 : q^2$ is multiple of $5 \implies q$ is multiple of 5 Thus, p and q both are multiple of 5. This shows that 5 is a common factor of p and q. This contradicts the hypothesis that p and q have no common factor, other than 1. $\therefore \sqrt{5}$ is not a rational number. #### Q.13. Show that: - (i) $(\sqrt{3} + \sqrt{7})$ is an irrational number - (ii) $(\sqrt{3} + \sqrt{5})$ is an irrational number. Ans. (i) Let $(\sqrt{3} + \sqrt{7})$ is a rational number. Then square of given number i.e., $(\sqrt{3} + \sqrt{7})^2$ is rational. $$\Rightarrow (\sqrt{3} + \sqrt{7})^2$$ is rational $$\Rightarrow (\sqrt{3})^2 + (\sqrt{7})^2 + 2\sqrt{3} \times \sqrt{7} = 3 + 7 + 2\sqrt{21} = (10 + 2\sqrt{21})$$ is rational But, $(10+2\sqrt{21})$ being the sum of a rational and irrational is irrational. This contradiction arises by assuming that $(\sqrt{3}+\sqrt{7})$ is rational number. Hence, $\sqrt{3} + \sqrt{7}$ is an irrational number. (ii) Let $(\sqrt{3} + \sqrt{5})$ is a rational number. Then square of given number i.e., $(\sqrt{3} + \sqrt{5})^2$ is rational. $$\Rightarrow (\sqrt{3} + \sqrt{5})^2$$ is rational $$\Rightarrow (\sqrt{3})^2 + (\sqrt{5})^2 + 2\sqrt{3} \times \sqrt{5} = 3 + 5 + 2\sqrt{15} = (8 + 2\sqrt{15}) \text{ rational.}$$ But, $(8+2\sqrt{15})$ being the sum of a rational and irrational it is irrational. This contradiction arises by assuming that $(\sqrt{3} + \sqrt{5})$ is rational. Hence, $(\sqrt{3} + \sqrt{5})$ is irrational number. ## Q.14. Use method of contradiction to show that $\sqrt{3}$ is an irrational number. **Ans.** (i) Now, Let $\sqrt{3}$ is a rational number $$\sqrt{3} = \frac{p}{q}$$ (where $q \neq 0$) Then, $$\left(\sqrt{3}\right)^2 = \left(\frac{p}{q}\right)^2$$ $$\Rightarrow 3 = \frac{p^2}{a^2} \Rightarrow p^2 = 3q^2$$ \therefore p^2 is divisible by 3 as $3q^2$ is divisible by 3. $$\Rightarrow$$ p is divisible by 3. ...(i) ...(ii) Let p = 3r Then $p^2 = 9r^2$ (On squaring both sides) $$\Rightarrow 3q^2 = 9r^2 \Rightarrow q^2 = 3r^2$$ \therefore 3 r^2 is also divisible by 3. $$\therefore q \text{ is divisible by 3.}$$ From (i) and (ii), we get $$\frac{p}{q}$$ is divisible by 3. \therefore p and q have 3 as their common factor but $\frac{p}{q}$ is a rational number i.e. p and q have no common factor. $\therefore \frac{p}{q}$ is not rational. So $\sqrt{3}$ is not rational. Hence, $\sqrt{3}$ is irrational number. #### Q.15. Insert three irrational numbers between 0 and 1. **Ans.** Three irrational numbers between 0 and 1 can be 0 < 0.1011001110001111... < 0.1010011000111... < 0.202002000200020002... < 1 #### Q.16. Rationalise the denominator and simplify. $$(i) \ \frac{1}{3-\sqrt{5}}$$ (ii) $$\frac{6}{\sqrt{5} + \sqrt{2}}$$ (iii) $$\frac{1}{2\sqrt{5}-\sqrt{3}}$$ (iv) $$\frac{7+3\sqrt{5}}{3+\sqrt{5}} - \frac{7-3\sqrt{5}}{3-\sqrt{5}}$$ $$(v) \frac{1}{1+\sqrt{5}+\sqrt{3}}$$ (vi) $$\frac{1}{\sqrt{6} + \sqrt{5} - \sqrt{11}}$$ Ans. (i) $$\frac{1}{3-\sqrt{5}}$$ Multiplying numerator and denominator by $3 + \sqrt{5}$, we get $$\frac{1}{3-\sqrt{5}} = \frac{3+\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}$$ $$= \frac{3+\sqrt{5}}{\left(3\right)^2 - \left(\sqrt{5}\right)^2} = \frac{3+\sqrt{5}}{9-5} = \frac{3+\sqrt{5}}{4} \qquad \{\because (a+b)(a-b) = a^2 - b^2\}$$ (ii) $$\frac{6}{\sqrt{5} + \sqrt{2}}$$ Multiplying numerator and denominator by $\sqrt{5} - \sqrt{2}$, we get $$\frac{6(\sqrt{5} - \sqrt{2})}{(\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2})} = \frac{6(\sqrt{5} - \sqrt{2})}{(\sqrt{5})^2 - (\sqrt{2})^2} \quad \{\because (a+b)(a-b) = a^2 - b^2\}$$ $$= \frac{6(\sqrt{5} - \sqrt{2})}{5 - 2} = \frac{6(\sqrt{5} - \sqrt{2})}{3} = 2(\sqrt{5} - \sqrt{2})$$ (iii) $$\frac{1}{2\sqrt{5}-\sqrt{3}}$$ Multiplying numerator and denominator by $2\sqrt{5} + \sqrt{3}$, we get $$\frac{1}{2\sqrt{5} - \sqrt{3}} = \frac{\left(2\sqrt{5} + \sqrt{3}\right)}{\left(2\sqrt{5} - \sqrt{3}\right)\left(2\sqrt{5} + \sqrt{3}\right)} = \frac{2\sqrt{5} + \sqrt{3}}{\left(2\sqrt{5}\right)^2 - \left(\sqrt{3}\right)^2} = \frac{2\sqrt{5} + \sqrt{3}}{17}$$ (iv) $$\frac{7+3\sqrt{5}}{3+\sqrt{5}} - \frac{7-3\sqrt{5}}{3-\sqrt{5}}$$ $$= \frac{(7+3\sqrt{5})(3-\sqrt{5}) - (7-3\sqrt{5})(3+\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}$$ $$= \frac{21-7\sqrt{5}+9\sqrt{5}-15-21-7\sqrt{5}+9\sqrt{5}+15}{(3)^2-(\sqrt{5})^2}$$ $$= \frac{21+2\sqrt{5}-15-21+2\sqrt{5}+15}{9-5} = \frac{4\sqrt{5}}{4} = \sqrt{5}$$ (v) $$\frac{1}{1+\sqrt{5}+\sqrt{3}}$$ Multiplying numerator and denominator by $1-(\sqrt{5}+\sqrt{3})$, we get $$\frac{1}{1+\sqrt{5}+\sqrt{3}} = \frac{1}{1+(\sqrt{5}+\sqrt{3})} \times \frac{1-(\sqrt{5}+\sqrt{3})}{1-(\sqrt{5}+\sqrt{3})}$$ $$= \frac{1-(\sqrt{5}+\sqrt{3})}{(1)^2-(\sqrt{5}+\sqrt{3})^2} = \frac{1-\sqrt{5}-\sqrt{3}}{1-(5+3+2\sqrt{15})}$$ $$= \frac{1-\sqrt{5}-\sqrt{3}}{1-8-2\sqrt{15}} = \frac{1-\sqrt{5}-\sqrt{3}}{-7-2\sqrt{15}} = \frac{\sqrt{5}+\sqrt{3}-1}{7+2\sqrt{15}}$$ Multiplying numerator and denominator by $7-2\sqrt{15}$, we get $$\frac{\sqrt{5} + \sqrt{3} - 1}{7 + 2\sqrt{15}} = \frac{\sqrt{5} + \sqrt{3} - 1}{7 + 2\sqrt{15}} \times \frac{(7 - 2\sqrt{15})}{(7 - 2\sqrt{15})}$$ $$= \frac{7\sqrt{5} + 7\sqrt{3} - 7 - 2\sqrt{75} - 2\sqrt{45} + 2\sqrt{15}}{49 - 4(15)}$$ $$= \frac{7\sqrt{5} + 7\sqrt{3} - 7 - 2\times5\sqrt{3} - 2\times3\sqrt{5} + 2\sqrt{15}}{-11}$$ $$= \frac{7\sqrt{5} + 7\sqrt{3} - 7 - 10\sqrt{3} - 6\sqrt{5} + 2\sqrt{15}}{-11}$$ $$= \frac{\sqrt{5} - 3\sqrt{3} - 7 + 2\sqrt{15}}{-11} = \frac{-(7 - \sqrt{5} + 3\sqrt{3} - 2\sqrt{15})}{-11}$$ $$= \frac{7 - \sqrt{5} + 3\sqrt{3} - 2\sqrt{15}}{11}$$ (vi) $$\frac{1}{\sqrt{6} + \sqrt{5} - \sqrt{11}}$$ Multiplying numerator and denominator by $\sqrt{6} + \sqrt{5} + \sqrt{11}$, we get $$\frac{1}{\sqrt{6} + \sqrt{5} - \sqrt{11}} = \frac{[(\sqrt{6} + \sqrt{5}) + \sqrt{11}]}{[(\sqrt{6} + \sqrt{5}) - \sqrt{11}][\sqrt{6} + \sqrt{5}) + \sqrt{11}]}$$ $$= \frac{\sqrt{6} + \sqrt{5} + \sqrt{11}}{(\sqrt{6} + \sqrt{5})^2 - (\sqrt{11})^2} = \frac{\sqrt{6} + \sqrt{5} + \sqrt{11}}{6 + 5 + 2\sqrt{30} - 11}$$ $$= \frac{\sqrt{6} + \sqrt{5} + \sqrt{11}}{2\sqrt{30}}$$ Multiplying numerator and denominator by $\sqrt{30}$, we get $$= \frac{(\sqrt{6} + \sqrt{5} + \sqrt{11})\sqrt{30}}{2\sqrt{30} \times \sqrt{30}}$$ $$= \frac{\sqrt{180} + \sqrt{150} + \sqrt{330}}{2\times 30}$$ $$= \frac{\sqrt{36\times5} + \sqrt{25\times6} + \sqrt{330}}{60}$$ $$= \frac{6\sqrt{5} + 5\sqrt{6} + \sqrt{330}}{60}$$ Q.17. If $\frac{\sqrt{3}-1}{\sqrt{3}+1} = a + b\sqrt{3}$, find the value of a and b. **Ans.** $$\frac{\sqrt{3}-1}{\sqrt{3}+1} = a + b\sqrt{3}$$ Multiplying both sides numerator and denominator of L.H.S. by $(\sqrt{3}-1)$, we get $$\Rightarrow \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$$ $$\Rightarrow \frac{3+1-2\sqrt{3}\times 1}{3-1}$$ $$\Rightarrow \frac{4-2\sqrt{3}}{2}$$ $$\Rightarrow 2-\sqrt{3}$$ But $\frac{\sqrt{3}-1}{\sqrt{3}+1} = a+b\sqrt{3}$, so $2-\sqrt{3} = a+b\sqrt{3}$ Comparing both sides $$\Rightarrow a = 2 \text{ and } b = -1$$ Q.18. If $\frac{3+\sqrt{2}}{3-\sqrt{2}} = a + b\sqrt{2}$, find the value of a and b. **Ans.** $$\frac{3+\sqrt{2}}{3-\sqrt{2}} = a + b\sqrt{2}$$ Multiplying numerator and denominator of L.H.S. by $3+\sqrt{2}$, we get $$\frac{3+\sqrt{2}}{3-\sqrt{2}} = \frac{(3+\sqrt{2})(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}$$ $$\Rightarrow \frac{(3+\sqrt{2})^2}{(3)^2 - (\sqrt{2})^2} \Rightarrow \frac{9+2+2\times 3\sqrt{2}}{9-2} \Rightarrow \frac{11+6\sqrt{2}}{7}$$ $$\Rightarrow \frac{11}{7} + \frac{6\sqrt{2}}{7} \text{ But } \frac{3+\sqrt{2}}{2} = a+b\sqrt{2}, \text{ so } \frac{11}{7} + \frac{6\sqrt{2}}{7} = a+b\sqrt{2}$$ Comparing both sides, $$a = \frac{11}{7}$$, $b = \frac{6}{7}$ #### Q.19. Simplify: (i) $$\frac{22}{2\sqrt{3}+1} + \frac{17}{2\sqrt{3}-1}$$ (ii) $\frac{\sqrt{2}}{\sqrt{6}-\sqrt{2}} - \frac{\sqrt{3}}{\sqrt{6}+\sqrt{2}}$ (iii) $\frac{19}{3\sqrt{2}-2\sqrt{3}} + \frac{1}{3\sqrt{2}+2\sqrt{3}}$ **Ans.** (i) $$\frac{22}{2\sqrt{3}+1} + \frac{17}{2\sqrt{3}-1}$$ By rationalising the denominator of each term, we get $$\frac{22}{2\sqrt{3}+1} + \frac{17}{2\sqrt{3}-1} = \frac{22}{2\sqrt{3}+1} \times \frac{2\sqrt{3}-1}{2\sqrt{3}-1} + \frac{17}{2\sqrt{3}-1} \times \frac{2\sqrt{3}+1}{2\sqrt{3}+1}$$ $$= \frac{44\sqrt{3}-22}{\left(2\sqrt{3}\right)^2 - (1)^2} + \frac{34\sqrt{3}+17}{\left(2\sqrt{3}\right)^2 - (1)^2}$$ $$= \frac{44\sqrt{3} - 22}{12 - 1} + \frac{34\sqrt{3} + 17}{12 - 1} = \frac{44\sqrt{3} - 22}{11} + \frac{34\sqrt{3} + 17}{11}$$ $$= \frac{44\sqrt{3} - 22 + 34\sqrt{3} + 17}{11} = \frac{78\sqrt{3} - 5}{11}$$ (ii) $$\frac{\sqrt{2}}{\sqrt{6}-\sqrt{2}} - \frac{\sqrt{3}}{\sqrt{6}+\sqrt{2}}$$ By rationalising the denominator of each term, we get $$\frac{\sqrt{2}}{\sqrt{6} - \sqrt{2}} - \frac{\sqrt{3}}{\sqrt{6} + \sqrt{2}} = \frac{\sqrt{2}}{\sqrt{6} - \sqrt{2}} \times \frac{\sqrt{6} + \sqrt{2}}{\sqrt{6} + \sqrt{2}} - \frac{\sqrt{3}}{\sqrt{6} + \sqrt{2}} \times \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} - \sqrt{2}}$$ $$= \frac{\sqrt{2 \times 6} + 2}{(\sqrt{6})^2 - (\sqrt{2})^2} - \frac{\sqrt{3 \times 6} - \sqrt{6}}{(\sqrt{6})^2 - (\sqrt{2})^2}$$ $$= \frac{\sqrt{2 \times 2 \times 3} + 2}{6 - 2} - \frac{\sqrt{3 \times 3 \times 2} - \sqrt{6}}{6 - 2}$$ $$= \frac{2\sqrt{3} + 2 - (3\sqrt{2} - \sqrt{6})}{4} = \frac{2\sqrt{3} + 2 - 3\sqrt{2} + \sqrt{6}}{4}$$ (iii) $$\frac{18}{3\sqrt{2} - 2\sqrt{3}} + \frac{1}{5\sqrt{2} + 2\sqrt{3}}$$ By rationalising the denominator of each term, we get $$\frac{18}{3\sqrt{2} - 2\sqrt{3}} + \frac{1}{5\sqrt{2} + 2\sqrt{3}} = \frac{18}{3\sqrt{2} - 2\sqrt{3}} \times \frac{3\sqrt{2} + 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{1}{5\sqrt{2} + 2\sqrt{3}} \times \frac{5\sqrt{2} - 2\sqrt{3}}{5\sqrt{2} - 2\sqrt{3}}$$ $$= \frac{54\sqrt{2} + 36\sqrt{3}}{(3\sqrt{2})^2 - (2\sqrt{3})^2} + \frac{5\sqrt{2} - 2\sqrt{3}}{(5\sqrt{2})^2 - (2\sqrt{3})^2}$$ $$= \frac{54\sqrt{2} + 36\sqrt{3}}{18 - 12} + \frac{5\sqrt{2} - 2\sqrt{3}}{38}$$ $$= \frac{19(54\sqrt{2} + 36\sqrt{3}) + 3(5\sqrt{2} - 2\sqrt{3})}{114}$$ $$= \frac{1026\sqrt{2} + 684\sqrt{3} + 15\sqrt{2} - 6\sqrt{3}}{114}$$ $$= \frac{1041\sqrt{2} + 678\sqrt{3}}{114} = \frac{1041\sqrt{2}}{114} + \frac{678\sqrt{3}}{114}$$ $$= \frac{347\sqrt{2}}{38} + \frac{113\sqrt{3}}{19}$$ Q.20. If $$x = \frac{\sqrt{5} - 2}{\sqrt{5} + 2}$$ and $y = \frac{\sqrt{5} + 2}{\sqrt{5} - 2}$; find: $x^2 + y^2 + xy$ (i) $$x^2$$ (ii) $$y^2$$ (iv) $$x^2 + y^2 + xy$$ (i) $$x^2$$ (ii) y^2 (iii) xy Ans. (i) $x = \frac{\sqrt{5} - 2}{\sqrt{5} + 2} = \frac{\sqrt{5} - 2}{\sqrt{5} + 2} \times \frac{\sqrt{5} - 2}{\sqrt{5} - 2}$ $$= \frac{(\sqrt{5} - 2)^2}{5 - 4} = \frac{5 + 4 - 4\sqrt{5}}{1} = 9 - 4\sqrt{5} \therefore x = 9 - 4\sqrt{5}$$ Squaring both sides, we get $$\Rightarrow x^2 = (9 - 4\sqrt{5})^2 = 81 + 16(5) - 72\sqrt{5} = 81 + 80 - 72\sqrt{5} = 161 - 72\sqrt{5}$$ (ii) $$y = \frac{\sqrt{5} + 2}{\sqrt{5} - 2} \times \frac{\sqrt{5} + 2}{\sqrt{5} + 2} = \frac{5 + 4 + 4\sqrt{5}}{5 - 4} = 9 + 4\sqrt{5}$$ $y = 9 + 4\sqrt{5}$ Squaring both sides, we get $$y^2 = (9 + 4\sqrt{5})^2 = 81 + 80 + 2 \times 9 \times 4\sqrt{5} = 161 + 72\sqrt{5}$$ (iii) $$xy = (9 - 4\sqrt{5})(9 + 4\sqrt{5}) = 81 - 80 = 1$$ (iv) $$x^2 + y^2 + xy = 161 - 72\sqrt{5} + 161 + 72\sqrt{5} + 1 = 323$$ #### **O.21.** Write down the values of: (i) $$\left(\frac{3}{2}\sqrt{2}\right)^2$$ (i) $$(5+\sqrt{3})^2$$ (iii) $$(\sqrt{6} - 3)^2$$ (iv) $$(\sqrt{5} + \sqrt{6})^2$$ **Ans.** (i) $$\left(\frac{3}{2}\sqrt{2}\right)^2 = \frac{3}{2}\sqrt{2} \times \frac{3}{2}\sqrt{2} = \frac{9}{4}(\sqrt{2})^2 = \frac{9}{4}\times 2 = \frac{9}{2}$$ (ii) $$(5+\sqrt{3})^2 = (5)^2 + (\sqrt{3})^2 + 2(5)(\sqrt{3})$$ = $25+3+10\sqrt{3}$ = $28+10\sqrt{3}$ [using $(a+b)^2 = a^2 + b^2 + 2ab$] (iii) $$(\sqrt{6} - 3)^2 = (\sqrt{6})^2 + (3)^2 - 2 \times \sqrt{6} \times 3$$ = $6 + 9 - 6\sqrt{6} = 15 - 6\sqrt{6}$ [using $$(a-b)^2 = a^2 + b^2 - 2ab$$] (iv) $$(\sqrt{5} + \sqrt{6}) = (\sqrt{5})^2 + (\sqrt{6})^2 + 2 \times \sqrt{5} \times \sqrt{6}$$ [using $(a+b)^2 = a^2 + b^2 + 2ab$] = $5 + 6 + 2\sqrt{30} = 11 + 2\sqrt{30}$ [using $$(a+b)^2 = a^2 + b^2 + 2ab$$] #### Q.22. Rationalize the denominator of: $$(i) \ \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$$ (ii) $$\frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} - \sqrt{5}}$$ (iii) $$\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$$ (iv) $$\frac{2\sqrt{5}+3\sqrt{2}}{2\sqrt{5}-3\sqrt{2}}$$ **Ans.** (i) $\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$ Multiplying numerator and denominator by $\sqrt{3} - \sqrt{2}$, we get $$= \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{(\sqrt{3} - \sqrt{2})^2}{(\sqrt{3})^2 - (\sqrt{2})^2}$$ $$= \frac{(\sqrt{3})^2 + (\sqrt{2})^2 - 2 \times \sqrt{3} \times \sqrt{2}}{3 - 2}$$ $$= \frac{3 + 2 - 2\sqrt{6}}{1} = 5 - 2\sqrt{6}$$ (ii) $$\frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} - \sqrt{5}}$$ Multiplying numerator and denominator by $\sqrt{7} + \sqrt{5}$, we get $$= \frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} - \sqrt{5}} \times \frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} + \sqrt{5}} = \frac{(\sqrt{7} + \sqrt{5})^2}{(\sqrt{7})^2 - (\sqrt{5})^2}$$ $$= \frac{(\sqrt{7})^2 + (\sqrt{5})^2 + 2 \times \sqrt{7} \times \sqrt{5}}{7 - 5}$$ $$= \frac{7 + 5 + 2\sqrt{35}}{2} = \frac{12 + 2\sqrt{35}}{2} = \frac{2(6 + \sqrt{35})}{2}$$ $$= 6 + \sqrt{35}$$ (iii) $$\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}$$ Multiplying numerator and denominator by $\sqrt{5} + \sqrt{3}$, we get $$= \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \times \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{(\sqrt{5} + \sqrt{3})^2}{(\sqrt{5})^2 - (\sqrt{3})^2}$$ $$= \frac{(\sqrt{5})^2 + (\sqrt{3})^2 + 2 \times \sqrt{3} \times \sqrt{5}}{5 - 3}$$ $$= \frac{5+3+2\sqrt{15}}{2} = \frac{8+2\sqrt{15}}{2} = \frac{2(4+\sqrt{15})}{2} = 4+\sqrt{15}$$ (iv) $\frac{2\sqrt{5}+3\sqrt{2}}{2\sqrt{5}-3\sqrt{2}}$ Multiplying numerator and denominator by $2\sqrt{5} + 3\sqrt{2}$, we get $$\frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}} = \frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} \times \frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}} = \frac{(2\sqrt{5} + 3\sqrt{2})^2}{(2\sqrt{5})^2 - (3\sqrt{2})^2}$$ $$= \frac{(2\sqrt{5})^2 + (3\sqrt{2})^2 + 2\times 2\sqrt{5} \times 3\sqrt{2}}{20 - 18}$$ $$= \frac{20 + 18 + 12\sqrt{10}}{2} = \frac{38 + 12\sqrt{10}}{2}$$ $$= \frac{2(19 + 6\sqrt{10})}{2} = 19 + 6\sqrt{10}$$ ### Q.23. Find the values of 'a' and 'b' in each of the following: (i) $$\frac{2+\sqrt{3}}{2-\sqrt{3}} = a+b\sqrt{3}$$ (ii) $$\frac{\sqrt{7}-2}{\sqrt{7}+2} = a\sqrt{7}+b$$ (iii) $$\frac{3}{\sqrt{3}-\sqrt{2}} = a\sqrt{3}-b\sqrt{2}$$ (iv) $\frac{5+3\sqrt{2}}{5-3\sqrt{2}} = a+b\sqrt{2}$ (iv) $$\frac{5+3\sqrt{2}}{5-3\sqrt{2}} = a + b\sqrt{2}$$ (v) $$\frac{\sqrt{3} + 4\sqrt{2}}{3\sqrt{2} + 5\sqrt{3}} = a - b\sqrt{3}$$ (v) $$\frac{\sqrt{3} + 4\sqrt{2}}{3\sqrt{2} + 5\sqrt{3}} = a - b\sqrt{3}$$ (vi) $\frac{4\sqrt{5} + 3\sqrt{2}}{3\sqrt{5} - 2\sqrt{2}} = a + b\sqrt{10}$ **Ans.** (i) $$\frac{2+\sqrt{3}}{2-\sqrt{3}} = a+b\sqrt{3}$$ Multiplying numerator and denominator of L.H.S. by $(2+\sqrt{3})$, we get $$\frac{2+\sqrt{3}}{2-\sqrt{3}} = \frac{2+\sqrt{3}}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}} = \frac{(2+\sqrt{3})^2}{4-3}$$ $$= \frac{(2)^2 + (\sqrt{3})^2 + 2 \times 2 \times \sqrt{3}}{1}$$ {using $(a+b)^2 = a^2 + 2ab + b^2$ } $$= 4+3+4\sqrt{3} = 7+4\sqrt{3}$$ But $\frac{2+\sqrt{3}}{2-\sqrt{3}} = a+b\sqrt{3}$. So, $7+4\sqrt{3} = a+b\sqrt{3}$ Comparing both sides we get: $$a = 7$$ and $b = 4$ (ii) $$\frac{\sqrt{7}-2}{\sqrt{7}+2} = a\sqrt{7}+b$$ Multiplying numerator and denominator of L.H.S. by $\sqrt{7}-2$, we get $$\frac{\sqrt{7}-2}{\sqrt{7}+2} = \frac{\sqrt{7}-2}{\sqrt{7}+2} \times \frac{\sqrt{7}-2}{\sqrt{7}-2} = \frac{(\sqrt{7}-2)^2}{7-4}$$ $$= \frac{(\sqrt{7})^2 + (2)^2 - 2 \times 2 \times \sqrt{7}}{3}$$ {using $(a-b)^2 = a^2 - 2ab + b^2$ } $$= \frac{7+4-4\sqrt{7}}{3} = \frac{11-4\sqrt{7}}{3}$$ But $$\frac{\sqrt{7}-2}{\sqrt{7}+2} = a\sqrt{7}+b$$. So, $\frac{11}{3} - \frac{4\sqrt{7}}{3} = a\sqrt{7}+b$. Comparing both sides, we get $$a\sqrt{7} = \frac{-4\sqrt{7}}{3}$$ and $b = \frac{11}{3}$ $$\Rightarrow a = \frac{-4}{3}$$ and $b = \frac{11}{3}$ (iii) $$\frac{3}{\sqrt{3}-\sqrt{2}} = a\sqrt{3} - b\sqrt{2}$$ Multiplying numerator and denominator of L.H.S. by $$\sqrt{3} + \sqrt{2}$$, we get $$\frac{3}{\sqrt{3} - \sqrt{2}} = \frac{3}{\sqrt{3} - \sqrt{2}} \times \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}} = \frac{3\sqrt{3} + 3\sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2}$$ $$= \frac{3\sqrt{3} + 3\sqrt{2}}{3 - 2} = \frac{3\sqrt{3} + 3\sqrt{2}}{1}$$ Also $$\frac{3}{\sqrt{3}-\sqrt{2}} = a\sqrt{3}-b\sqrt{2}$$. So, $3\sqrt{3}+3\sqrt{2} = a\sqrt{3}-b\sqrt{2}$ Comparing both sides, we get $$a = 3$$ and $b = -3$ (iv) $$\frac{5+3\sqrt{2}}{5-3\sqrt{2}} = a + b\sqrt{2}$$ Multiplying numerator and denominator of L.H.S. by $5+3\sqrt{2}$, we get $$\frac{5+3\sqrt{2}}{5-3\sqrt{2}} = \frac{5+3\sqrt{2}}{5-3\sqrt{2}} \times \frac{5+3\sqrt{2}}{5+3\sqrt{2}} = \frac{(5+3\sqrt{2})^2}{(5)^2 - (3\sqrt{2})^2}$$ $$= \frac{(5)^2 + (3\sqrt{2})^2 + 2 \times 5 \times 3\sqrt{2}}{25-18} \qquad \{\text{using } (a+b)^2 = a^2 + 2ab + b^2\}$$ $$= \frac{25+18+30\sqrt{2}}{7} = \frac{43+30\sqrt{2}}{7}$$ Also, $$\frac{5+3\sqrt{2}}{5-3\sqrt{2}} = a+b\sqrt{2}$$. So, $\frac{43}{7} + \frac{30\sqrt{2}}{7} = a+b\sqrt{2}$ Comparing both sides, we get: $$a = \frac{43}{7}$$ and $b = \frac{30}{7}$ (v) $$\frac{\sqrt{3} + 4\sqrt{2}}{3\sqrt{2} + 5\sqrt{3}} = a - b\sqrt{3}$$ Multiplying numerator and denominator of L.H.S. by $3\sqrt{2} - 5\sqrt{3}$, we get: $$\frac{\sqrt{3} + 4\sqrt{2}}{3\sqrt{2} + 5\sqrt{3}} = \frac{\sqrt{3} + 4\sqrt{2}}{3\sqrt{2} + 5\sqrt{3}} \times \frac{3\sqrt{2} - 5\sqrt{3}}{3\sqrt{2} - 5\sqrt{3}}$$ $$= \frac{3\sqrt{2} \times \sqrt{3} - 5 \times 3 + 12 \times 2 - 20\sqrt{2} \times 3}{(3\sqrt{2})^2 - (5\sqrt{3})^2}$$ $$= \frac{3\sqrt{2} \times 3 - 15 + 24 - 20\sqrt{2} \times 3}{18 - 75}$$ $$= \frac{9 - 17\sqrt{2} \times 3}{-57} = -\frac{9}{57} + \frac{17\sqrt{6}}{57} = \frac{-3}{19} + \frac{17\sqrt{6}}{57}$$ But $\frac{\sqrt{3} + 4\sqrt{2}}{3\sqrt{2} + 5\sqrt{3}} = a - b\sqrt{3}$. So, $\frac{-3}{19} + \frac{17\sqrt{6}}{57} = a - b\sqrt{6}$ Comparing both sides, we get: $$a = -\frac{3}{19}$$ and $b = \frac{-17}{57}$ (vi) $$\frac{4\sqrt{5} + 3\sqrt{2}}{3\sqrt{5} - 2\sqrt{2}} = a + b\sqrt{10}$$ Multiplying numerator and denominator of L.H.S. by $$3\sqrt{5} + 2\sqrt{2}$$, we get $$\frac{4\sqrt{5} + 3\sqrt{2}}{3\sqrt{5} - 2\sqrt{2}} = \frac{4\sqrt{5} + 3\sqrt{2}}{3\sqrt{5} - 2\sqrt{2}} \times \frac{3\sqrt{5} + 2\sqrt{2}}{3\sqrt{5} + 2\sqrt{2}}$$ $$= \frac{4\sqrt{5} \times 3\sqrt{5} + 4\sqrt{5} \times 2\sqrt{2} + 3\sqrt{2} \times 3\sqrt{5} + 3\sqrt{2} \times 2\sqrt{2}}{(3\sqrt{5})^2 - (2\sqrt{2})^2}$$ $$= \frac{12 \times 5 + 8\sqrt{10} + 9\sqrt{10} + 6 \times 2}{45 - 8}$$ $$= \frac{72 + 17\sqrt{10}}{37} = \frac{72}{37} + \frac{17\sqrt{10}}{37}$$ Also, $\frac{4\sqrt{5} + 3\sqrt{2}}{3\sqrt{5} - 2\sqrt{2}} = a + b\sqrt{10}$. So, $a + b\sqrt{10} = \frac{72}{37} + \frac{17\sqrt{10}}{37}$ Comparing both sides, we get: $$a = \frac{72}{37}$$ and $b = \frac{17}{37}$