7 QUADRILATERAL AND POLYGONS

Q.1.(A) Write in degrees the sum of all interior angles of a :
(i) Hexagon (ii) Septagon (iii) Nonagon (iv) 15-gon

Ans. (i) Sum of interior angles of a hexagon is $(2 n-4)$ right angles

$$
=(2 \times 6-4) \times 90^{\circ}=(12-4) \times 90^{\circ}=8 \times 90^{\circ}=720^{\circ}
$$

(ii) Sum of interior angles of a septagon is $(2 n-4)$ right angles

$$
=(2 \times 7-4) \times 90^{\circ}=(14-4) \times 90^{\circ}=10 \times 90^{\circ}=900^{\circ}
$$

(iii) Sum of interior angles of nonagon is $(2 n-4)$ right angles

$$
=(2 \times 9-4) \times 90^{\circ}=(18-4) \times 90^{\circ}=14 \times 90^{\circ}=260^{\circ}
$$

(iv) Sum of interior angles of a 15 -gon is $(2 n-4)$ right angles

$$
=(2 \times 15-4) \times 90^{\circ}=(30-4) \times 90^{\circ}=26 \times 90^{\circ}=2340^{\circ}
$$

(B) Find the measure, in degrees, of each interior angle of a regular :

(i) Pentagon
(ii) Octagon
(iii) Decagon (iv) 16-gon

Ans.

(i) Each interior angle of pentagon is $\frac{(2 n-4)}{n}$ right angles

$$
=\frac{2 \times 5-4}{5} \times 90^{\circ}=\frac{10-4}{5} \times 90^{\circ}=\frac{6}{5} \times 90^{\circ}=108^{\circ}
$$

(ii) Each interior angle of octagon is $\frac{2 n-4}{n}$ right angles

$$
=\frac{2 \times 8-4}{8} \times 90^{\circ}=\frac{16-4}{8} \times 90^{\circ}=\frac{12}{8} \times 90^{\circ}=135^{\circ}
$$

(iii) Each interior angle of decagon is $\frac{2 n-4}{n}$ right angles

$$
=\frac{2 \times 10-4}{10} \times 90^{\circ}=\frac{20-4}{10} \times 90^{\circ}=\frac{16}{10} \times 90^{\circ}=144^{\circ}
$$

(iv) Each interior angle of 16 -gon is $\frac{2 n-4}{n}$ right angles

$$
=\frac{2 \times 16-4}{16} \times 90^{\circ}=\frac{32-4}{16} \times 90^{\circ}=\frac{28}{16} \times 90^{\circ}=\frac{315}{2}=157.5^{\circ}
$$

(C) Find the measure, in degrees, of each exterior angle of a regular polygon containing :
(i) 6 sides
(ii) 8 sides
(iii) 15 sides
(iv) 20 sides

Ans. We know that each exterior angle of a polygon of n sides $=\frac{360^{\circ}}{n}$
(i) Each exterior angle of 6 sided polygon $=\frac{360^{\circ}}{6}=60^{\circ}$
(ii) Each exterior angle of 8 sides polygon $=\frac{360^{\circ}}{8}=45^{\circ}$
(iii) Each exterior angle of 15 sided polygon $=\frac{360^{\circ}}{15}=24^{\circ}$
(iv) Each exterior angle of 20 sided polygon $=\frac{360^{\circ}}{20}=18^{\circ}$
(D) Find the number of sides of a polygon, the sum of whose interior angles is :
(i) 24 right angles
(ii) 1620°
(iii) $\mathbf{2 8 8 0}{ }^{\circ}$

Ans. (i) Sum of interior angles of a regular polygons $=24$ right angles
$\therefore \quad(2 n-4)=24 \Rightarrow 2 n=24+4=28$
$\therefore \quad n=\frac{28}{2}=14$
Hence, polygon has 14 sides.
(ii) Sum of interior angles of a regular polygon $=1620^{\circ}$
$\therefore \quad(2 n-4)$ right angles $=1620^{\circ} \Rightarrow(2 n-4) \times 90^{\circ}=1620^{\circ}$
$\Rightarrow 2 n-4=\frac{1620^{\circ}}{90^{\circ}} \Rightarrow 2 n-4=18^{\circ} \Rightarrow 2 n=18+4=22 \therefore n=\frac{22}{2}=11$
Hence, polygon has 11 sides.
(iii) Sum of interior angles of a regular polygon $=2880^{\circ}$
$\Rightarrow(2 n-4)$ right angles $=2880^{\circ} \Rightarrow 2 n-4=\frac{2880^{\circ}}{90^{\circ}} \Rightarrow 2 n-4=32$
$\Rightarrow 2 n=32+4=36 \therefore n=\frac{36}{2}=18$
Hence, polygon has 18 sides.
(E) Find the number of sides in a regular polygon, if each of its exterior angles is :
(i) 72°
(ii) $\mathbf{2 4}{ }^{\circ}$
(iii) $(\mathbf{2 2 . 5})^{\circ}$
(iv) 15°

testlabze
 STUDY•ASSESS - EXCEL

Ans. We know that each exterior angle of a regular polygon of n sides $=\frac{360^{\circ}}{n}$
(i) Exterior angle $=72^{\circ}$
$\therefore \quad \frac{360^{\circ}}{n}=72^{\circ} \Rightarrow n=\frac{360^{\circ}}{72^{\circ}}=5$. Hence, number of sides of polygon $=5$.
(ii) Each exterior angle $=24^{\circ}$
$\therefore \frac{360^{\circ}}{n}=24 \Rightarrow n=\frac{360^{\circ}}{24^{\circ}}=15$. Hence, number of sides of the regular polygon $=15$.
(iii) Each exterior angle $=(22.5)^{\circ}$
$\therefore \quad \frac{360^{\circ}}{n}=22.5^{\circ} \Rightarrow n=\frac{360^{\circ}}{22.5^{\circ}}=\frac{360 \times 10}{225}=16$.
Hence, number of sides of the regular polygon $=16$
(iv) Each exterior angle $=15^{\circ}$

$$
\therefore \quad \frac{360^{\circ}}{n}=15^{\circ} \Rightarrow n=\frac{360^{\circ}}{15^{\circ}}=24 .
$$

Hence, number of sides of the regular polygon $=24$
(F) Find the number of sides in a regular polygon, if each of its interior angles is :
(i) 120°
(ii) 150°
(iii) 160°
(iv) 165°

Ans. We know that each interior angle of a regular polygon of n sides $=\frac{2 n-4}{n}$ right angles
(i) Each interior angle $=120^{\circ}$

Each interior angle $=\frac{2 n-4}{n}$ right angle $=120^{\circ}$
$\Rightarrow \frac{2 n-4}{n} \times 90^{\circ}=120^{\circ} \Rightarrow \frac{2 n-4}{n}=\frac{120^{\circ}}{90^{\circ}}$
$\Rightarrow \frac{2 n-4}{n}=\frac{4}{3} \Rightarrow 6 n-12=4 n \Rightarrow 6 n-4 n=12 \Rightarrow 2 n=12 \therefore n=6$
Hence, number of sides $=6$
(ii) Each interior angle $=150^{\circ}$
$\therefore \quad \frac{2 n-4}{n}$ right angle $=150^{\circ} \Rightarrow \frac{2 n-4}{n} \times 90^{\circ}=150^{\circ}$
$\Rightarrow \frac{2 n-4}{n}=\frac{150^{\circ}}{90^{\circ}}=\frac{5}{3} \Rightarrow 6 n-12=5 n \Rightarrow 6 n-5 n=12 \Rightarrow n=12$.
Hence, number of sides $=12$

testlabzem
 STUDY•ASSESS •EXCEL

(iii) Each interior angle $=160^{\circ}$

$$
\begin{aligned}
& \therefore \quad \frac{2 n-4}{n} \text { right angles }=160^{\circ} \Rightarrow \frac{2 n-4}{n} \times 90^{\circ}=160^{\circ} \\
& \Rightarrow \quad \frac{2 n-4}{n}=\frac{160^{\circ}}{90^{\circ}}=\frac{16}{9} \Rightarrow 18 n-36=16 n \Rightarrow n=\frac{36}{2}=18
\end{aligned}
$$

Hence, number of sides $=18$.
(iv) Each interior angle $=165^{\circ}$
$\therefore \quad \frac{2 n-4}{n}$ right angles $=165^{\circ} \Rightarrow \frac{2 n-4}{n} \times 90^{\circ}=165^{\circ}$
$\Rightarrow \frac{2 n-4}{n}=\frac{165^{\circ}}{90^{\circ}}=\frac{11}{6} \Rightarrow 12 n-24=11 n \Rightarrow 12 n-11 n=24 \Rightarrow n=24$
Hence, number of sides $=24$

Q.2.(A) Is it possible to describes a polygon, the sum of whose interior angles is :

(i) 320°
(ii) 540°
(iii) $\mathbf{1 1}$ right angles
(iv) 14 right angles

Ans. We know that sum of interior angles of a regular polygon of n sides $=(2 n-4)$ right angles.
(i) Sum of interior angles $=320^{\circ}$
$\therefore \quad(2 n-4)$ right angles $=320^{\circ} \Rightarrow(2 n-4) \times 90^{\circ}=320^{\circ}$
$\Rightarrow 2 n-4=\frac{320^{\circ}}{90^{\circ}}=\frac{32}{9} \Rightarrow 2 n=\frac{32}{9}+4=\frac{32+36}{9}=\frac{68}{9} \therefore n=\frac{68}{9 \times 2}=\frac{34}{9}$
Which is in fraction. Hence, it is not possible to describe a polygon.
(ii) Sum of interior angles $=540^{\circ}$
$\therefore \quad(2 n-4)$ right angles $=540^{\circ} \Rightarrow(2 n-4) \times 90^{\circ}=540^{\circ}$
$\Rightarrow 2 n-4=\frac{540^{\circ}}{90^{\circ}}=6 \Rightarrow 2 n=6+4=10 \Rightarrow n=\frac{10}{2}=5$
(iii) Sum of interior angles $=11$ right angles
$\therefore \quad(2 n-4)$ right angles $=11$ right angles
$\Rightarrow 2 n-4=11 \Rightarrow 2 n=11+4=15 \Rightarrow n=\frac{15}{2}$
Which is in fraction. Hence, it is not possible to describe a polygons.
(iv) Sum of interior angles $=14$ right angles
$\therefore \quad(2 n-4)$ right angles $=14$ right angles
$\Rightarrow 2 n-4=14 \Rightarrow 2 n=14+4=18 \Rightarrow n=\frac{18}{2}=9$
Hence, it is possible to describe a polygon.
Q.2.(B) Is it possible to have a regular polygon, each of whose exterior angle is :
(i) 32°
(ii) $\mathbf{1 8}^{\circ}$
(ii) $\frac{1}{8}$ of a right angle (iv) 80°

Ans. We know that exterior angle of a regular polygon of n sides $=\frac{360^{\circ}}{n}$
(i) Exterior angle $=32^{\circ}$
$\therefore \quad \frac{360^{\circ}}{n}=32^{\circ} \Rightarrow n=\frac{360^{\circ}}{32}=\frac{45}{4}$
Which is in fraction. Hence, it is not possible to have a regular polygon.
(ii) Exterior angle $=180^{\circ}$
$\therefore \quad \frac{360^{\circ}}{n}=18^{\circ} \Rightarrow n=\frac{360^{\circ}}{18^{\circ}}=20$
Hence, it is possible to have a regular polygon.
(iii) Exterior angle $=\frac{1}{8}$ of right angle $=\frac{1}{8} \times 90^{\circ}=\frac{45^{\circ}}{4}$
$\therefore \quad \frac{360^{\circ}}{n}=\frac{45^{\circ}}{4} \Rightarrow n=\frac{360^{\circ} \times 4}{45}=32$
Hence, it is possible to have a regular polygon.
(iv) Exterior angle $=80^{\circ} \therefore \frac{360^{\circ}}{n}=80^{\circ} \Rightarrow \frac{360^{\circ}}{80^{\circ}}=\frac{9}{2}$

Which is in fraction. Hence, it is not possible to have a regular polygon.
Q.2.(C) Is it possible to have a regular polygon, each of whose interior angles is :
(i) 120°
(ii) 105°
(iii) 175°

Ans. We know that each interior angle of a regular polygon of n sides $=\frac{2 n-4}{n}$ right angles.
(i) Interior angle $=120^{\circ}$
$\therefore \quad \frac{2 n-4}{n}$ right angles $=120^{\circ} \Rightarrow \frac{2 n-4}{n} \times 90^{\circ}=120^{\circ}$
$\Rightarrow \frac{2 n-4}{n}=\frac{120^{\circ}}{90^{\circ}}=\frac{4}{3} \Rightarrow 6 n-12=4 n \Rightarrow 6 n-4 n=12$
$\Rightarrow 2 n=12 \Rightarrow n=6$. It is possible to have a regular polygon.

testlabziom
 STUDY•ASSESS •EXCEL

(ii) Interior angle $=105^{\circ}$

$$
\begin{aligned}
& \therefore \quad \frac{2 n-4}{n} \text { right angle }=105^{\circ} \Rightarrow \frac{2 n-4}{n} \times 90^{\circ}=105^{\circ} \\
& \Rightarrow \quad \frac{2 n-4}{n}=\frac{105^{\circ}}{90^{\circ}} \Rightarrow \frac{2 n-4}{n}=\frac{7}{6} \Rightarrow 12 n-24=7 n \\
& \Rightarrow 12 n-7 n=24 \Rightarrow 5 n=24 \Rightarrow n=\frac{24}{5}
\end{aligned}
$$

Which is fraction. Hence, it is not possible to have a regular polygon.
(iii) Interior angle $=175^{\circ}$
$\therefore \quad \frac{2 n-4}{n}$ right angle $=175^{\circ} \Rightarrow \frac{2 n-4}{n} \times 90^{\circ}=175^{\circ}$
$\Rightarrow \frac{2 n-4}{n}=\frac{175^{\circ}}{90^{\circ}} \Rightarrow \frac{2 n-4}{n}=\frac{35}{18} \Rightarrow 36 n-72=35 n$
$\Rightarrow 36 n-35 n=72 \Rightarrow n=72$
Hence, it is possible to have a regular polygon.
Q.3. The sum of the interior angles of a polygon is four times the sum of its exterior angles. Find the number of sides in the polygon.
Ans. Let the number of sides of a regular polygon $=n$
Given that :
Sum of interior angles of a regular polygon $=4 \times$ sum of its exterior angles
$\Rightarrow(2 n-4) \times 90^{\circ}=4 \times 360^{\circ}$
$\Rightarrow(2 n-4) \times 90^{\circ}=4 \times 360^{\circ}$
$\Rightarrow 2 n \times 90-4 \times 90=1440$
$\Rightarrow 180 n-360=1440$
$\Rightarrow 180 n=1440+360 \Rightarrow 180 n=1800$
$\Rightarrow n=\frac{1800}{180} \Rightarrow n=10$. Hence, number of sides of a regular polygon $=10$
Q.4. The angles of a quadrilateral are in the ratio $3: 2: 4: 1$. Find the angles.

Assign a special name to the quadrilateral.
Ans. The ratio of angles of quadrilateral $=3: 2: 4: 1$
Let, the angle of quadrilateral

$$
=3 x^{\circ}, 2 x^{\circ}, 4 x^{\circ}, 1 x^{\circ}
$$

Sum of angles of a quadrilateral $=360^{\circ}$
$\Rightarrow 3 x^{\circ}+2 x^{\circ}+4 x^{\circ}+x^{\circ}=360^{\circ}$

$\Rightarrow 10 x^{2}=360^{\circ} \Rightarrow 10 x=360 \Rightarrow x=\frac{360^{\circ}}{10} \Rightarrow x=36^{\circ}$

testlabziom
 STUDY•ASSESS •EXCEL

\therefore Angles of quadrilateral are $3 x^{\circ}, 2 x^{\circ}, 4 x^{\circ}, 1 x^{\circ}$
\Rightarrow Angles of quadrilateral are $3 \times 36^{\circ}, 2 \times 36^{\circ}, 4 \times 36^{\circ}, 1 \times 36^{\circ}$
\Rightarrow Angles of quadrilateral are $108^{\circ}, 72^{\circ}, 144^{\circ}, 36^{\circ}$
In the adjoining figure

$$
\angle \mathrm{A}+\angle \mathrm{B}=108^{\circ}+72^{\circ} \Rightarrow \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}
$$

i.e. Sum of interior angles on the same side of transversal $\mathrm{AB}=180^{\circ}$
$\therefore \quad \mathrm{AD} \| \mathrm{BC}$.
Hence, quadrilateral ABCD is a trapezium.

Q.5. The angles of a pentagon are in the ratio $3: 4: 5: 2: 4$. Find the angles.

Ans. Sum of five angles of a pentagon ABCDE is $(2 n-4)$ right angles

$$
=(2 \times 5-4) \times 90^{\circ}=(10-4) \times 90^{\circ}=6 \times 90^{\circ}=540^{\circ}
$$

The ratio between the angles say $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}, \angle \mathrm{D}, \angle \mathrm{E}$

$$
=3: 4: 5: 2: 4
$$

Let $\angle \mathrm{A}=3 x$, then $\angle \mathrm{B}=4 x, \angle \mathrm{C}=5 x, \angle \mathrm{D}=2 x$ and $\angle \mathrm{E}=4 x$
$\therefore \quad 3 x+4 x+5 x+2 x+4 x=540^{\circ} \Rightarrow 18 x=540^{\circ} \Rightarrow x=\frac{540^{\circ}}{18}=30^{\circ}$
Hence, $\angle \mathrm{A}=3 x=3 \times 30^{\circ}=90^{\circ}, \angle \mathrm{B}=4 x=4 \times 30^{\circ}=120^{\circ}$
$\angle \mathrm{C}=5 x=5 \times 30^{\circ}=150^{\circ}, \angle \mathrm{D}=2 x=2 \times 30^{\circ}=60^{\circ}, \angle \mathrm{E}=4 x=4 \times 30^{\circ}=120^{\circ}$
Q.6. The angles of a pentagon are $(3 x+15)^{\circ},(x+16)^{\circ},(2 x+9)^{\circ},(3 x-8)^{\circ}$ and $(4 x-15)^{\circ}$ respectively. Find the value of x and hence find the measures of all the angles of the pentagon.
Ans. Let angles of pentagon ABCDE are $(3 x+5)^{\circ},(x+16)^{\circ},(2 x+9)^{\circ},(3 x-8)^{\circ}$ and $(4 x-15)^{\circ}$.
But the sum of these five angles is $(2 n-4)$ right angle

$$
=(2 \times 5-4) \times 90^{\circ}=(10-4) \times 90^{\circ}=6 \times 90^{\circ}=540^{\circ}
$$

$\therefore \quad 3 x+5+x+16+2 x+9+3 x-8+4 x-15=540^{\circ}$
$13 x+30-23=540^{\circ} \Rightarrow 13 x+7=540^{\circ}$
$\Rightarrow 13 x=540^{\circ}-7=533^{\circ} \Rightarrow x=\frac{533}{13}=41$
$\therefore \quad$ First angle $=3 x+5=3 \times 41+5=123+5=128^{\circ}$
Second angle $=x+16=41+16=57^{\circ}$
Third angle $=2 x+9=2 \times 41+9=82+9=91^{\circ}$
Fourth angle $=3 x-8=3 \times 41-8=123-8=115^{\circ}$
Fifth angle $=4 x-15=4 \times 41-15=164-15=149^{\circ}$

testlabzem
 STUDY•ASSESS•EXCEL

Q.7. The angles of a hexagon are $2 x^{\circ},(2 x+25)^{\circ}, 3(x-15)^{\circ},(3 x-20)^{\circ}, 2(x+5)^{\circ}$
and $3(x-15)^{\circ}$ respectively. Find the value of x and hence find the measures of all the angles of the hexagon.
Ans. Angles a hexagon are $2 x^{\circ},(2 x+25)^{\circ}, 3(x-15)^{\circ},(3 x-20)^{\circ}, 2(x+5)^{\circ}$ and $3(x-5)^{\circ}$.
But sum of angles of a hexagon $=(2 n-4)$ right angles

$$
=(2 \times 6-4) \times 90^{\circ}=(12-4) \times 90^{\circ}=8 \times 90^{\circ}=720^{\circ}
$$

$\therefore \quad 2 x+2 x+25+3(x-15)+3 x-20+2(x+5)+3(x-5)=720^{\circ}$
$\Rightarrow 2 x+2 x+25+3 x-45+3 x-20+2 x+10+3 x-15=720^{\circ}$
$\Rightarrow 15 x+35-80=720^{\circ}$
$\Rightarrow 15 x=720^{\circ}+45^{\circ} \Rightarrow 15 x=765^{\circ} \Rightarrow x=\frac{765}{15}=51^{\circ}$
Hence, first angle $=2 x=2 \times 51^{\circ}=102^{\circ}$
Second angle $=2 x+25=2 \times 51^{\circ}+25^{\circ}=102^{\circ}+25^{\circ}=127^{\circ}$
Third angle $=3(x-15)=3\left(51^{\circ}-15^{\circ}\right)=3 \times 36^{\circ}=108^{\circ}$
Fourth angle $=3 x-20=3 \times 51^{\circ}-20=153^{\circ}-20^{\circ}=133^{\circ}$
Fifth angle $=2(x+5)=2(51+5)=2 \times 56=112^{\circ}$
Sixth angle $=3(x-5)=3(51-5)=3 \times 46=138^{\circ}$
Hence, angles are $102^{\circ}, 127^{\circ}, 108^{\circ}, 133^{\circ}, 112^{\circ}$ and 138°.
Q.8. Three of the exterior angles of a hexagon are $40^{\circ}, 52^{\circ}$ and 85° respectively and each of the remaining exterior angles is x°. Calculate the value of x.
Ans. Sum of exterior angles of a hexagon $=360^{\circ}$
Three angles are $40^{\circ}, 52^{\circ}$ and 85° and three angles are x° each.
$\therefore \quad 40^{\circ}+52^{\circ}+85^{\circ}+x^{\circ}+x^{\circ}+x^{\circ}=360^{\circ} \Rightarrow 177^{\circ}+3 x^{\circ}=360^{\circ}$
$\Rightarrow 3 x^{\circ}=360^{\circ}-177^{\circ}=183^{\circ} \therefore x=\frac{183^{\circ}}{3}=61^{\circ}$
Hence, $x=61^{\circ}$.
Q.9. One angle of an octagon is 100° and other angles are equal. Find the measure of each of the equal angles.
Ans. One angles of an octagon $=100^{\circ}$
Let each of the other 3 angles $=x^{\circ}$
But sum of interior angles of an octagon is $(2 n-4)$ right angles

$$
\begin{aligned}
& =(2 \times 8-4) \times 90^{\circ}=(16-4) \times 90^{\circ}=12 \times 90^{\circ}=1080^{\circ} \\
\therefore \quad 100+7 x=1080 \Rightarrow 7 x & =1080-100 \Rightarrow 7 x=980^{\circ} \Rightarrow x=\frac{980}{7}=140^{\circ}
\end{aligned}
$$

Hence, each angle of the remaining angles $=140^{\circ}$.
Q.10. The interior angle of a regular polygon is double the exterior angle. Find the number of sides in the polygon.
Ans. Let number of sides of a regular polygon $=x$
But sum of interior angle and exterior angle $=180^{\circ}$
Let each exterior angle $=x^{\circ}$
Then interior angle $=2 x \therefore x+2 x=180^{\circ} \Rightarrow 3 x=180^{\circ}$

$$
\begin{aligned}
& x=\frac{180^{\circ}}{3}=60^{\circ} . \text { Now, } x \times \text { exterior angle }=360^{\circ} \\
& x \times 60^{\circ}=360^{\circ} \Rightarrow x=\frac{360^{\circ}}{60^{\circ}}=6
\end{aligned}
$$

Hence, number of sides of the regular polygon $=6$.
Q.11. The ratio of each interior angle to each exterior angle of a regular polygon
is $7: \mathbf{2}$. Find the number of sides in the polygon.
Ans. Let number of sides of regular polygon $=3$
Ratio of interior angle with exterior angle $=7: 2$
Let each interior angle $=7 x$ and each exterior angle $=2 x$
$\therefore \quad 7 x+2 x=180^{\circ}$
$\Rightarrow 9 x=180^{\circ} \Rightarrow x=\frac{180^{\circ}}{9}=20^{\circ}$
$\therefore \quad$ Each exterior angles $=20 x^{\circ}=2 \times 20^{\circ}=40^{\circ}$
But sum of exterior angles of a regular polygon of x sides $=360^{\circ}$
$\Rightarrow x \times 40^{\circ}=360^{\circ} \Rightarrow x=\frac{360^{\circ}}{40^{\circ}}=9$
Hence, number of sides of a regular polygon $=9$.
Q.12. The sum of the interior angles of a polygon is 6 times the sum of its exterior angles. Find the number of sides in the polygon.
Ans. Sum of the exterior angles of a regular polygon of x sides $=360^{\circ}$
\therefore Sum of its interior angles $=360^{\circ} \times 6=2160^{\circ}$
But sum of interior angles of the polygon $=(2 x-4)$ right angles
$\therefore \quad(2 x-4) \times 90^{\circ}=2160^{\circ}$
$\Rightarrow \quad 2 x-4=\frac{2160^{\circ}}{90^{\circ}} \Rightarrow 2 x-4=24 \Rightarrow 2 x=24+4=28$
$\therefore \quad x=\frac{28}{2}=14$. Hence, number of sides $=14$.
Q.13. Two angles of a convex polygon are right angles and each of the other angles is 120°. Find the number of sides of the polygon.
Ans. \because Two angles of a convex polygon $=90^{\circ}$ each
$\therefore \quad$ Exterior angles will be $180^{\circ}-90^{\circ}=90^{\circ}$ each
Each of other interior angles is 120°.
$\therefore \quad$ Each of exterior angles will be $180^{\circ}-120^{\circ}=60^{\circ}$
But the sum of its exterior angles $=360^{\circ}$
Let number of sides $=n$
Then $90^{\circ}+90^{\circ}+(n-2) \times 60^{\circ}=360^{\circ} \Rightarrow 180^{\circ}+(n-2) 60^{\circ}=360^{\circ}$

$$
60^{\circ}(n-2)=360^{\circ}-180^{\circ}=180^{\circ} \Rightarrow n-2=\frac{180^{\circ}}{60^{\circ}}=3
$$

$\therefore \quad n=3+2=5$
Hence, number of sides $=5$.
Q.14. The number of sides of two regular polygons are in the ratio 4:5 and their interior angles are in the ratio $15: 16$. Find the number of sides in each polygon.
Ans. Ratio between the sides of two regular polygon $=4: 5$
Let number of sides of first polygon $=4 x$
and number of sides the second polygon $=5 x$
$\therefore \quad$ Interior angle of the first polygon $=\frac{2 \times 4 x-4}{4 x}$ right angles
$\Rightarrow \quad \frac{8 x-4}{4 x}=\frac{2 x-1}{x}$ right angles and interior angle of second polygon
$=\frac{2 \times 5 x-4}{5 x}$ right angle
$\Rightarrow \quad \frac{10 x-4}{5 x}$ right angle
$\therefore \quad \frac{2 x-1}{x}: \frac{10 x-4}{5 x}=15: 16 \Rightarrow \frac{2 x-1}{x} \times \frac{5 x}{10 x-4}=\frac{15}{16}$
$\Rightarrow \quad \frac{5(2 x-1)}{10 x-4}=\frac{15}{16} \Rightarrow \frac{10 x-5}{10 x-4}=\frac{15}{16}$
$\Rightarrow \quad 160 x-80=150 x-60 \Rightarrow 160 x-150 x=-60+80 \Rightarrow 10 x=20 \therefore x=\frac{20}{10}=2$
$\therefore \quad$ Number of sides of the first polygon $=4 x=4 \times 2=8$ and number of sides of the second polygon $=5 \times 2=10$.

testlabzem
 STUDY•ASSESS •EXCEL

Q.15. How many diagonals are there in a
(i) Pentagon
(ii) Hexagon
(iii) Octagon

Ans. Number of diagonals of a polygon of n sides $=\frac{1}{2} n(n-1)-n$
(i) \therefore Number of diagonals in a pentagon $=\frac{1}{2} \times 5(5-1)-5 \quad($ where $n=5)$
$\Rightarrow \frac{1}{2} \times 5 \times 4-5=10-5=5$
(ii) Number of diagonals in a hexagon $=\frac{1}{2} \times 6(6-1)-6 \quad$ (Where $n=6$)
$\Rightarrow \frac{1}{2} \times 6 \times 5-6=15-6=9$
(iii) Number of diagonals in an octagon $=\frac{1}{2} \times 8(8-1)-8$
$\Rightarrow \frac{1}{2} \times 8 \times 7-8=28-8=20$
Q.16. The alternate sides of any pentagon are produced to meet, so as to form a star-shaped figure, shown in the figure. Prove that the sum of measures of the angles at the vertices of the star is 180°.
Ans. Given : The alternate sides of a pentagon ABCDE are produced to meet at P, Q, R, S and T so as to form a star shaped figure.

To Prove :

$$
\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}+\angle \mathrm{S}+\angle \mathrm{T}=180^{\circ}
$$

or $\angle a+\angle b+\angle c+\angle d+\angle e=180^{\circ}$
Proof :
$\angle 1+\angle 2+\angle 3+\angle 4+\angle 5=360^{\circ}$
(Sum of exterior angles of a polygon)
Similarly, $\angle 6+\angle 7+\angle 8+\angle 9+\angle 10=360^{\circ}$
But in $\triangle \mathrm{BCP}=\angle 1+\angle b+\angle a=180^{\circ}$
(Sum of angles of a triangle is 180°)
Similarly in $\triangle \mathrm{CDQ}, \angle 2+\angle 7+\angle b=180^{\circ}$
In $\triangle \mathrm{DER}, \angle 3+\angle 8+\angle \mathrm{C}=180^{\circ}$
In \triangle EAS, $\angle 4+\angle 9+\angle d=180^{\circ}$
and in $\triangle \mathrm{ABT}, \angle 5+\angle 10+\angle e=180^{\circ}$

Adding eqn. (iii), (iv), (v), (vi) and (vii), we get
$\angle 1+\angle 6+\angle a+\angle 2+\angle 7+\angle b+\angle 3+\angle 8+\angle c+\angle 4+\angle 9+\angle d+\angle 5+\angle 10+\angle e$

testlabzem
 STUDY•ASSESS • EXCEL

$=180^{\circ}+180^{\circ}+180^{\circ}+180^{\circ}+180^{\circ}$
$\Rightarrow(\angle 1+\angle 2+\angle 3+\angle 4+\angle 5)+(\angle 6+\angle 7+\angle 8+\angle 9+\angle 10)$
$+(\angle a+\angle b+\angle c+\angle d+\angle e)=900^{\circ}$
$\Rightarrow 360^{\circ}+360^{\circ}+(\angle a+\angle b+\angle c+\angle d+\angle e)=900^{\circ}$
$\Rightarrow 720^{\circ}+(\angle a+\angle b+\angle c+\angle d+\angle e)=900^{\circ}$
$\Rightarrow \angle a+\angle b+\angle c+\angle d+\angle e=900^{\circ}-720^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}+\angle \mathrm{S}+\angle \mathrm{T}=180^{\circ}$
Q.17. In a pentagon $\mathrm{ABCDE}, \mathrm{AB}$ is parallel to DC and $\angle \mathrm{A}: \angle \mathrm{E}: \angle \mathrm{D}=3: 4: 5$. Find angle E.

Ans. In pentagon ABCDE ,

$\mathrm{AB} \| \mathrm{DC}$ and BC is the transversal. [Given]
$\therefore \quad \angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \quad \ldots$ (i) \quad [Sum of co-interior angles $=180^{\circ}$] $\angle \mathrm{A}: \angle \mathrm{E}: \angle \mathrm{D}=3: 4: 5 \quad$ [Given]
$\therefore \quad$ Let $\angle \mathrm{A}=3 x^{\circ}, \angle \mathrm{E}=4 x^{\circ}$ and $\angle \mathrm{D}=5 x^{\circ}$

Sum of interior angles of n sided polygon $=(2 n-4) \times 90^{\circ}$
[Putting $n=5$]

Sum of interior angles of a pentagon.

$$
=(2 \times 5-4) \times 90^{\circ}=(10-4) \times 90^{\circ}
$$

$$
\Rightarrow \quad 6 \times 90^{\circ}=540^{\circ}
$$

$$
\therefore \quad \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}=540^{\circ}, \angle \mathrm{A}+\angle \mathrm{D}+\angle \mathrm{E}+(\angle \mathrm{B}+\angle \mathrm{C})=540^{\circ}
$$

$$
\begin{equation*}
3 x^{\circ}+4 x^{\circ}+5 x^{\circ}+\left(180^{\circ}\right)=540^{\circ} \tag{v}
\end{equation*}
$$

From eqn. (i), (ii) and (iv), we get

$$
\begin{aligned}
& 12 x^{\circ}+180^{\circ}=540^{\circ} \\
& 12 x^{\circ}=540^{\circ}-180^{\circ} \Rightarrow 12 x^{\circ}=360^{\circ} \\
\Rightarrow \quad & 12 x=360^{\circ} \Rightarrow x=\frac{360^{\circ}}{12} \Rightarrow x=30^{\circ} \\
& \angle \mathrm{E}=4 x^{\circ} \\
& \angle \mathrm{E}=4 \times 30^{\circ} \\
\Rightarrow \quad & \angle \mathrm{E}=120^{\circ}
\end{aligned}
$$

$$
\angle \mathrm{E}=4 x^{\circ} \quad \ldots \text { (vi) }[\text { From eqn. (ii) }]
$$

Q.18. ABCDE is pentagon in which AB is parallel to ED . If $\angle \mathrm{B}=142^{\circ}, \angle \mathrm{C}=3 x^{\circ}$ and $\angle \mathrm{D}=2 x^{\circ}$, calculate x.
Ans. In pentagon ABCDE
$A B \| E D$
(Given)
and AE is the transversal
$\therefore \quad \angle \mathrm{A}+\angle \mathrm{E}=180^{\circ}$ [Sum of co-interior angles $\left.=180^{\circ}\right]$

$$
\begin{aligned}
& \angle \mathrm{B}=142^{\circ} \\
& \angle \mathrm{C}=3 x^{\circ} \\
& \angle \mathrm{D}=2 x^{\circ}
\end{aligned}
$$

(Given)
(Given)
...(iii)
(Given)
...(iv)
...(vi) [From eqn. (ii)]
...(vii) [From eqn. (v) and (vi)]

Sum of interior angles of n sided polygon $=(2 n-4) \times 90^{\circ}$
Sum of interior angles of pentagon. (Putting $n=5$)

$$
\begin{gather*}
=(2 \times 5-4) \times 90^{\circ} \\
=(10-4) \times 90^{\circ}=6 \times 90^{\circ}=540^{\circ} \\
\Rightarrow \quad \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}=540^{\circ} \\
(\angle \mathrm{A}+\angle \mathrm{E})+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=540^{\circ} \\
180^{\circ}+142^{\circ}+3 x^{\circ}+2 x^{\circ}=540^{\circ} \tag{vi}
\end{gather*}
$$

From eqn. (i), (ii), (iii), (iv) and (vi)
$\Rightarrow 322^{\circ}+5 x^{\circ}=540^{\circ} \Rightarrow 5 x=540-322$
$\Rightarrow 5 x=540-322 \Rightarrow 5 x=218$
$\Rightarrow x=\frac{218}{5} \Rightarrow x=43.6$

Q.19. In a hexagon $A B C D E F$; side $A B$ is parallel to side $E F$ and

$\angle B: \angle C: \angle D: \angle E=6: 4: 2: 3$. Find angles B and D.
Ans. In hexagon ABCDEF
$\mathrm{AB} \| \mathrm{FE}$ and AF is transversal (Given)
$\therefore \quad \angle \mathrm{A}+\angle \mathrm{F}=180^{\circ}$
[Sum of co-interior angles $=180^{\circ}$]
$\angle \mathrm{B}: \angle \mathrm{C}: \angle \mathrm{D}: \angle \mathrm{E}=6: 4: 2: 3 \quad$ (Given)
$\therefore \quad$ Let $\angle \mathrm{B}=6 x^{\circ}, \angle \mathrm{C}=4 x^{\circ}, \angle \mathrm{D}=2 x^{\circ}$ and $\angle \mathrm{E}=3 x^{\circ}$

Sum of interior angles of n sided polygon $=(2 n-4) \times 90^{\circ}$
Sum of interior angles of a hexagon $=(2 \times 6-4) \times 90^{\circ}=(12-4) \times 90^{\circ}$

$$
=8 \times 90^{\circ}=720^{\circ} \quad[\text { Putting } n=6]
$$

$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=720^{\circ}$
$\Rightarrow \quad(\angle \mathrm{A}+\angle \mathrm{F})+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}=720^{\circ}$
$\Rightarrow 180^{\circ}+6 x^{\circ}+4 x^{\circ}+2 x^{\circ}+3 x^{\circ}=720^{\circ}$
$\Rightarrow 180^{\circ}+15 x^{\circ}=720^{\circ} \Rightarrow 15 x^{\circ}=720^{\circ}-180^{\circ}$
$\Rightarrow 15 x^{\circ}=540^{\circ} \Rightarrow x=\frac{540}{15} \Rightarrow x=36^{\circ}$
$\angle \mathrm{B}=6 x^{\circ} \Rightarrow \angle \mathrm{B}=6 \times 36^{\circ} \Rightarrow \angle \mathrm{B}=216^{\circ}$
$\angle \mathrm{D}=2 x^{\circ} \Rightarrow \angle \mathrm{D}=2 \times 36^{\circ} \Rightarrow \angle \mathrm{D}=72^{\circ}$
Hence, $\angle \mathrm{B}=216^{\circ}$, and $\angle \mathrm{D}=72^{\circ}$
Q.20. In the adjoining figure, equilateral $\triangle E D C$ surmounts square $A B C D$. If $\angle \mathrm{DEB}=x^{\circ}$, find the value of x.
Ans. From figure, ABCD is a square and $\triangle \mathrm{CDE}$ is an equilateral triangle. BE is joined. $\angle \mathrm{DEB}=x^{\circ}$
In $\triangle \mathrm{BCE}, \mathrm{BC}=\mathrm{CE}=\mathrm{CD}$
$\therefore \quad \angle \mathrm{CBE}=\angle \mathrm{CEB}$
and $\angle \mathrm{BCE}=\angle \mathrm{BCD}+\angle \mathrm{DCE}=90^{\circ}+60^{\circ}=150^{\circ}$
But $\angle \mathrm{BCE}+\angle \mathrm{CBE}+\angle \mathrm{CEB}=180^{\circ}$
(Sum of a triangle is 180°)
$\Rightarrow 150^{\circ}+\angle \mathrm{CEB}+\angle \mathrm{CEB}=180^{\circ}$
$\Rightarrow 150^{\circ}+2 \angle \mathrm{CEB}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{CEB}=180^{\circ}-150^{\circ}=30^{\circ} \therefore \angle \mathrm{CEB}=\frac{30^{\circ}}{2}=15^{\circ}$

But $\angle \mathrm{CED}=60^{\circ} \quad$ (Angle of an equilateral triangle is 60°)
$\Rightarrow x^{\circ}+\angle \mathrm{CEB}=60^{\circ}$
$\Rightarrow x^{\circ}+15^{\circ}=60^{\circ} \Rightarrow x^{\circ}=60^{\circ}-15^{\circ}=45^{\circ} \therefore x=45^{\circ}$.
Q.21. In the adjoining figure, ABCD is a rhombus whose diagonals intersect at
O. if $\angle \mathrm{OAB}: \angle \mathrm{OBA}=2: 3$, find the angles of $\triangle \mathrm{OAB}$.
Ans. ABCD is a rhombus and its diagonal bisect each other at right angles at O .
$\angle \mathrm{OAB}: \angle \mathrm{OBA}=2: 3$
Let $\angle \mathrm{OAB}=2 x$ and $\angle \mathrm{OBA}=3 x$
But $\angle \mathrm{AOB}=90^{\circ}$
$\therefore \quad \angle \mathrm{OAB}+\angle \mathrm{OBA}=90^{\circ}$
$\Rightarrow 2 x+3 x=90^{\circ} \Rightarrow 5 x=90^{\circ}$
$\therefore \quad x=\frac{90^{\circ}}{5}=18^{\circ} \therefore \angle \mathrm{OAB}=2 x=2 \times 18^{\circ}=36^{\circ}$

$\angle \mathrm{OBA}=3 x=3 \times 18^{\circ}=54^{\circ}$ and $\angle \mathrm{AOB}=90^{\circ}$
Q.22. In the given figure, ABCD is a rectangle whose diagonals intersect at O. Diagonal $A C$ is produced to E and $\angle E C D=140^{\circ}$. Find the angles of $\triangle O A B$.
Ans. $A B C D$ is a rectangle and its diagonals $A C$ and $B D$ bisect each other at O .
Diagonal AC is produced to E such that $\angle \mathrm{ECD}=140^{\circ}$

$$
\begin{aligned}
& \angle \mathrm{ECD}+\angle \mathrm{DCO}=180^{\circ} \\
\Rightarrow & \text { (Linear pair) } \\
\Rightarrow & \angle \mathrm{DCO}=180^{\circ}+\angle \mathrm{DCO}=180^{\circ}-140^{\circ}=40^{\circ} \\
\text { But } \mathrm{OC}=\mathrm{OD} & \text { (Half of equal diagonals) }
\end{aligned}
$$

testlabzem
 STUDY•ASSESS - EXCEL

$\therefore \quad \angle \mathrm{CDO}=\angle \mathrm{DCO}=40^{\circ}$ Now $\because \mathrm{AB} \| \mathrm{CD}$
$\therefore \quad \angle \mathrm{OAB}=\angle \mathrm{DCO}=40^{\circ}$ (Opposite sides of a rectangle)

Similarly, $\angle \mathrm{OBA}=40^{\circ}$
In $\triangle \mathrm{AOB}, \angle \mathrm{OBA}+\angle \mathrm{OAB}+\angle \mathrm{AOB}=180^{\circ}$ (Sum of angles of a triangle is 180°)
$\Rightarrow 40^{\circ}+40^{\circ}+\angle \mathrm{AOB}=180^{\circ}$
$\Rightarrow 80^{\circ}+\angle \mathrm{AOB}=180^{\circ}$
$\Rightarrow \angle \mathrm{AOB}=180^{\circ}-80^{\circ}=100^{\circ}$
Q.23. In the given figure, ABCD is a kite whose diagonals intersect at O. If $\angle \mathrm{DAB}=54^{\circ}$ and $\angle \mathrm{BCD}=76^{\circ}$, calculate : (i) $\angle \mathrm{ODA}$, (ii) $\angle \mathrm{OBC}$.
Ans. From figure, ABCD is a kite
$\therefore \quad \mathrm{AB}=\mathrm{AD}, \mathrm{BC}=\mathrm{DC}$
Its diagonals AC and BD intersect at O .
$\angle \mathrm{DAB}=54^{\circ}$ and $\angle \mathrm{BCD}=76^{\circ}$
In $\triangle \mathrm{BCD}$,

$$
\angle \mathrm{CDB}=\angle \mathrm{CBD} \quad(\because \mathrm{BC}=\mathrm{DC})
$$

But $\angle \mathrm{BCD}+\angle \mathrm{CDB}+\angle \mathrm{CBD}=180^{\circ}$
$\Rightarrow 76^{\circ}+\angle \mathrm{CBD}+\angle \mathrm{CDB}=180^{\circ}$
$\Rightarrow 76^{\circ}+2 \angle \mathrm{CBD}=180^{\circ}$

$\Rightarrow 2 \angle \mathrm{CBD}=180^{\circ}-76^{\circ}=104^{\circ}$
$\therefore \quad \angle \mathrm{CBD}=\frac{104^{\circ}}{2}=52^{\circ}$
$\angle \mathrm{OBC}=52^{\circ}$
In $\triangle \mathrm{ABD}, \angle \mathrm{DAB}=54^{\circ}$ and $\angle \mathrm{ABD}=\angle \mathrm{ADB}$
But $\angle \mathrm{DAB}+\angle \mathrm{ABD}+\angle \mathrm{ADB}=180^{\circ}$
$\Rightarrow 54^{\circ}+\angle \mathrm{ADB}+\angle \mathrm{ADB}=180^{\circ}$
$\Rightarrow 54^{\circ}+2 \angle \mathrm{ADB}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{ADB}=180^{\circ}-54^{\circ}=126^{\circ}$
$\therefore \quad \angle \mathrm{ADB}=\frac{126^{\circ}}{2}=63^{\circ}$
or $\angle \mathrm{ODA}=63^{\circ}$
Hence, $\angle \mathrm{ODA}=63^{\circ}$ and $\angle \mathrm{OBC}=52^{\circ}$

testlabzem
 STUDY•ASSESS •EXCEL

Q.24. In the given figure, ABCD is an isosceles trapezium in which $\angle \mathrm{CDA}=2 x^{\circ}$ and $\angle B A D=3 x^{\circ}$. Find all the angles of the trapezium.
Ans. ABCD is an isosceles trapezium in which $\mathrm{AD}=\mathrm{BC}$ and $\mathrm{AB} \| \mathrm{CD}$.

$$
\begin{array}{ll}
& \angle \mathrm{BAD}+\angle \mathrm{CDA}=180^{\circ} \\
\Rightarrow & 3 x+2 x=180^{\circ} \Rightarrow 5 x=180^{\circ} \\
\therefore & x=\frac{180^{\circ}}{5}=36^{\circ}
\end{array}
$$

$\therefore \quad \angle \mathrm{A}=3 x=3 \times 36^{\circ}=108^{\circ}, \angle \mathrm{D}=2 x=2 \times 36^{\circ}=72^{\circ}$
$\because \quad \mathrm{ABCD}$ is an isosceles trapezium.

$\therefore \quad \angle \mathrm{A}=\angle \mathrm{B}$ and $\angle \mathrm{C}=\angle \mathrm{D} \therefore \angle \mathrm{B}=108^{\circ}$ and $\angle \mathrm{C}=72^{\circ}$
Hence, $\angle \mathrm{A}=108^{\circ}, \angle \mathrm{B}=108^{\circ}, \angle \mathrm{C}=72^{\circ}, \angle \mathrm{D}=72^{\circ}$.

Q.25. In the given figure, ABCD is a trapezium in which

 $\angle \mathrm{A}=(x+25)^{\circ}, \angle \mathrm{B}=y^{\circ}, \angle \mathrm{C}=95^{\circ}$ and $\angle \mathrm{D}=(2 x+5)^{\circ}$.Find the values of \boldsymbol{x} and \boldsymbol{y}.
Ans. In trapezium ABCD
$\angle \mathrm{A}=(x+25)^{\circ}, \angle \mathrm{B}=y^{\circ}, \angle \mathrm{C}=95^{\circ}$ and $\angle \mathrm{D}=(2 x+5)^{\circ}$

$\angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$
(Co-interior angles)
$\Rightarrow(x+25)^{\circ}+(2 x+5)^{\circ}=180^{\circ} \Rightarrow x+25^{\circ}+2 x+5^{\circ}=180^{\circ}$
$\Rightarrow 3 x+30^{\circ}=180^{\circ} \Rightarrow 3 x=180^{\circ}-30^{\circ}=150^{\circ}$
$\therefore \quad x=\frac{150^{\circ}}{3}=50^{\circ}$
Similarly, $\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow y+95^{\circ}=180^{\circ} \Rightarrow y=180^{\circ}-95^{\circ}=85^{\circ}$. Hence, $x=50^{\circ}, y=85^{\circ}$.
Q.26. DEC is an equilateral triangle in a square ABCD . If BD and CE intersect at O and $\angle C O D=x^{\circ}$, find the value of x.
Ans. ABCD is a square and $\triangle \mathrm{ECD}$ is an equilateral triangle. Diagonal BD and CE intersect each other at $\mathrm{O}, \angle \mathrm{COD}=x^{\circ}$.
$\because \quad \mathrm{BD}$ is the diagonal of square ABCD
$\therefore \quad \angle \mathrm{BDC}=\frac{90^{\circ}}{2}=45^{\circ} \Rightarrow \angle \mathrm{ODC}=45^{\circ}$
$\angle \mathrm{ECD}=60^{\circ}$ (Angle of equilateral triangle) or $\angle \mathrm{OCD}=60^{\circ}$ Now in \triangle OCD,
$\angle \mathrm{OCD}+\angle \mathrm{ODC}+\angle \mathrm{COD}=180^{\circ}$
(Sum of angles of a triangle is 180°)

$\Rightarrow 45^{\circ}+60^{\circ}+x^{\circ}=180^{\circ}$
$\Rightarrow 105^{\circ}+x^{\circ}=180^{\circ}$

testlabziem
 STUDY•ASSESS • EXCEL

$\therefore \quad x^{\circ}=180^{\circ}-105^{\circ}=75^{\circ}$
Hence, $x=75$.
Q.27. If one angle of a parallelogram is 90°, show that each of its angles measures 90°.
Ans. Given : ABCD is a parallelogram and $\angle \mathrm{A}=90^{\circ}$.

To Prove : Each angle of the parallelogram ABCD is 90°.
Proof : In parallelogram $\mathrm{ABCD}, \because \angle \mathrm{A}=\angle \mathrm{C}$
$\therefore \quad \angle \mathrm{C}=90^{\circ} \quad\left(\because \angle \mathrm{A}=90^{\circ}\right)$
But $\angle \mathrm{A}+\angle \mathrm{D}=180^{\circ} \Rightarrow \angle \mathrm{D}=180^{\circ}-90^{\circ}=90^{\circ}$ and $\angle \mathrm{B}=\angle \mathrm{D}$
(Opposite angles of a parallelogram)
$\therefore \angle \mathrm{B}=90^{\circ}$. Hence, $\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$
Q.28. In the adjoining figure, ABCD and PQBA are two parallelograms. Prove that :
(i) DPQC is a parallelogram. (ii) $\mathrm{DP}=\mathrm{CQ}$.
(iii) $\triangle \mathrm{DAP} \cong \triangle C B Q$.

Ans. Given : ABCD and PQBA are two parallelogram PD and QC are joined.
To Prove : (i) DPQC is a parallelogram
(ii) $\mathrm{DP}=\mathrm{CQ} \quad$ (iii) $\triangle \mathrm{DAP} \cong \triangle \mathrm{CBO}$.

Proof : (i) $A B C D$ and $P Q B A$ are parallelogram $D C \| A B$ and $A B \| P Q($ Given $)$
$\therefore \quad D C \| P Q$
Again $\mathrm{DC}=\mathrm{AB}$ and $\mathrm{AB}=\mathrm{PQ} \quad$ (Opposite sides of parallelograms)
$\therefore \quad \mathrm{DC}=\mathrm{PQ}$
$\because \quad D C=P Q$ and $D C \| P Q$
$\therefore \quad \mathrm{DPQC}$ is a parallelogram.
(ii) $\therefore \mathrm{DP}=\mathrm{CQ} \quad$ (Opposite sides of parallelogram)
(iii) In $\triangle \mathrm{DAP}$ and $\triangle \mathrm{CBQ}$

$\mathrm{DA}=\mathrm{CB}$	(Opposite sides of a parallelogram)
$\mathrm{AP}=\mathrm{BQ}$	(Opposite sides of parallelogram)
$\mathrm{PD}=\mathrm{CQ}$	
$\therefore \quad \Delta \mathrm{DAP} \cong \Delta \mathrm{CBQ}$	(SSS axiom of congruency)
Hence, proved.	

Q.29. In the adjoining figure, ABCD is a parallelogram. $\mathrm{BM} \perp \mathrm{AC}$ and DN \perp AC. Prove that :
(i) $\Delta B M C \cong \triangle D N A$.
(ii) $\mathbf{B M}=\mathbf{D N}$.

Ans. Given : ABCD is a parallelogram.
$\mathrm{BM} \perp \mathrm{AC}$ and $\mathrm{DN} \perp \mathrm{AC}$.
To Prove : (i) $\Delta \mathrm{BMC} \cong \triangle \mathrm{DNA}$ (ii) $\mathrm{BM}=\mathrm{DN}$

Proof : In $\triangle \mathrm{BMC}$ and $\triangle \mathrm{DNA}$

$$
\begin{aligned}
& \mathrm{BC}=\mathrm{AD} \\
& \angle \mathrm{M}=\angle \mathrm{N}=90^{\circ}
\end{aligned}
$$

$$
\angle \mathrm{BCM}=\angle \mathrm{DAN}
$$

(i) $\therefore \triangle \mathrm{BMC} \cong \triangle \mathrm{DNA}$
(ii) $\therefore \mathrm{BM}=\mathrm{DN}$
(Opposite sides of a parallelogram)
(Alternate angles)
(AAS axiom of congruency)
(CPCT)
Q.30. In the adjoining figure, ABCD is a parallelogram and X is the mid-point of $B C$. The line $A X$ produced meets $D C$ produced at Q. The parallelogram AQPB is completed. Prove that :
(i) $\Delta \mathrm{ABX} \cong \Delta \mathrm{QCX}$.
(ii) $\mathrm{DC}=\mathrm{CQ}=\mathrm{QP}$.

Ans. Given : $A B C D$ is a parallelogram X is mid-point of $B C$.
AX is joined and produced to meet DC produced at Q . From B, BP is drawn parallel to AQ so that AQPB is a parallelogram.
To Prove : (i) $\triangle A B X \cong \triangle Q C X$.
(ii) $\mathrm{DC}=\mathrm{CQ}=\mathrm{QP}$.

Proof: (i) In $\triangle A B X$ and $\triangle Q C X$.

$$
\begin{array}{lll}
& \mathrm{XB}=\mathrm{XC} & (\because \mathrm{X} \text { is mid-point of } \mathrm{BC} \text {) } \\
& \angle \mathrm{AXB}=\angle \mathrm{CXQ} & \text { (Vertically opposite angles) } \\
& \angle \mathrm{BAX}=\angle \mathrm{XQC} & \text { (Alternate angles) } \\
\therefore \quad & \triangle \mathrm{ABX} \cong \triangle \mathrm{QCX} & \text { (ASA axiom of congruency) }
\end{array}
$$

(ii) In parallelogram ABCD ,
$\mathrm{AB}=\mathrm{DC}$
Similarly, in parallelogram AQPB

$$
\begin{equation*}
\mathrm{AB}=\mathrm{QP} \tag{ii}
\end{equation*}
$$

\therefore From eqn. (i) and (ii), we get $\mathrm{DC}=\mathrm{QP}$
In $\triangle \mathrm{BCP}$,
X is mid-point of BC and $\mathrm{AQ} \| \mathrm{BP} \quad \therefore \mathrm{Q}$ is mid-point of CP .
$\Rightarrow \mathrm{CQ}=\mathrm{QP}$

testlabzem
 STUDY•ASSESS •EXCEL

From eqn. (iii) and (iv), we get
$\mathrm{DC}=\mathrm{QP}=\mathrm{CQ}$ or $\mathrm{DC}=\mathrm{CQ}=\mathrm{QP}$.
Q.31. In the adjoining figure, ABCD is a parallelogram. Line segments AX and CY bisect $\angle \mathrm{A}$ and $\angle \mathrm{C}$ respectively. Prove that :
(i) $\triangle \mathrm{ADX} \cong \triangle \mathrm{CBY}$
(ii) $\mathbf{A X}=\mathbf{C Y}$
(iii) $\mathbf{A X}$ II $\mathbf{C Y}$
(iv) AYCX is a parallelogram

Ans. Given : ABCD is a parallelogram. Line segments AX and
CY bisect $\angle \mathrm{A}$ and $\angle \mathrm{C}$ respectively.
To Prove : (i) $\Delta \mathrm{ADX} \cong \Delta \mathrm{CBY}$
(ii) $\mathrm{AX}=\mathrm{CY}$
(iii) $A X \| C Y$
(iv) AYCX

parallelogram.
Proof: (i) In $\triangle \mathrm{ADX}$ and $\triangle \mathrm{CBY}$.

$$
\begin{array}{lll}
& & A \mathrm{AD}=\mathrm{BC} \\
& \angle \mathrm{D}=\angle \mathrm{B} & \text { (Opposite sides of a parallelogram) } \\
& \angle \mathrm{DAX}=\angle \mathrm{BCY} & \text { (Opposite angles of the parallelogram) } \\
& \therefore & \triangle \mathrm{ADX} \cong \triangle \mathrm{CBY}
\end{array} \text { (Half of equal angles A and C) }
$$

But these are corresponding angles.
$\therefore \quad \mathrm{AX} \| \mathrm{CY}$
(iv) $\because \quad \mathrm{AX}=\mathrm{CY}$ and $\mathrm{AX} \| \mathrm{CY}$
\therefore AYCX is a parallelogram.
Q.32. In the given figure, ABCD is a parallelogram and X, Y are points on diagonal BD such that $D X=B Y$. Prove that CXAY is a parallelogram.
Ans. Given : ABCD is a parallelogram. X and Y are points on diagonal BD such that DX = BY.
To Prove : CXAY is a parallelogram.
Construction : Join AC meeting BD at O.
Proof : $\because \mathrm{AC}$ and BD are the diagonals of the parallelogram ABCD.
$\therefore \quad \mathrm{AC}$ and BD bisect each other at O .
$\therefore \quad \mathrm{AO}=\mathrm{OC}$ and $\mathrm{BO}=\mathrm{OD}$

But DX = BY
(Given)
$\therefore \quad \mathrm{DO}-\mathrm{DX}=\mathrm{OB}-\mathrm{BY}$
$\Rightarrow \mathrm{OX}=\mathrm{OY}$
Now in quadrilateral CXAY, diagonals AC and XY bisect each other at O.

testlabzem
 STUDY•ASSESS •EXCEL

\therefore CSAY is a parallelogram.
Q.33. Show that the bisectors of the angles of a parallelogram enclose a rectangle.
Ans. Given : ABCD is a parallelogram.
Bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ meet at S and bisectors of $\angle \mathrm{C}$ and $\angle \mathrm{D}$ meet at Q .
To Prove: PQRS is a rectangle.
Proof: $\because \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ} \therefore \frac{1}{2} \angle \mathrm{~A}+\frac{1}{2} \angle \mathrm{~B}=90^{\circ}$
$\Rightarrow \angle \mathrm{SAB}=\angle \mathrm{SBA}=90^{\circ}$
$\therefore \quad$ In $\triangle \mathrm{ASB}, \angle \mathrm{ASB}=90^{\circ}$

Similarly we can prove that $\angle \mathrm{CQD}=90^{\circ}$
Again $\angle \mathrm{A}+\angle \mathrm{D}=180^{\circ} \therefore \frac{1}{2} \angle \mathrm{~A}+\frac{1}{2} \angle \mathrm{D}=90^{\circ}$
$\Rightarrow \angle \mathrm{PAD}=\angle \mathrm{PDA}=90^{\circ} \therefore \angle \mathrm{APD}=90^{\circ}$
But $\angle \mathrm{SPQ}=\angle \mathrm{APD} \quad$ (Vertically opposite angles)
$\therefore \quad \angle \mathrm{SPQ}=90^{\circ}$
$\because \quad$ Similarly, we can prove that $\angle \mathrm{SRQ}=90^{\circ}$
\because In quadrilateral $P Q R S$, its each angle is of 90°.
Hence, PQRS is a rectangle.
Q.34. If a diagonal of a parallelogram bisects one of the angles of the
parallelogram, prove that it also bisects the second angle and then the two diagonals are perpendicular to each other.
Ans. Given : In parallelogram ABCD, diagonal AC bisects $\angle \mathrm{A}$. BD is joined meeting AC at O .
To Prove : (i) AC bisects $\angle \mathrm{C}$.
(ii) Diagonal AC and BD are perpendicular to each other.

Proof : In parallelogram $A B C D \because A B \| D C$
$\therefore \quad \angle 1=\angle 4$

and $\angle 2=\angle 3$
(Alternate angles)
But $\angle 1=\angle 2$
(Given)
$\therefore \quad \angle 3=\angle 4$
Hence, AC bisects $\angle \mathrm{C}$ also. Similarly we can prove that diagonal BD will also bisect the $\angle \mathrm{B}$ and $\angle \mathrm{D} . \therefore \mathrm{ABCD}$ is a rhombus.
But diagonals of a rhombus bisect each other at right angles.
$\therefore \quad \mathrm{AC}$ and BD are perpendicular to each other.

testlabzem
 STUDY•ASSESS•EXCEL

Q.35. In the given figure, ABCD is a parallelogram and E is the mid-point of BC . If $D E$ and $A B$ produced meet at F, prove that $A F=2 A B$.
Ans. Given : $A B C D$ is a parallelogram. E is mid-point of $B C . D E$ and $A B$ are produced to meet at F .
To Prove : AF = 2AB.
Proof: In parallelogram in $\triangle \mathrm{DEC}$ and $\triangle \mathrm{FEB}$ $\mathrm{CE}=\mathrm{EB}(\because \mathrm{E}$ is mid-point of BC$)$ $\angle \mathrm{DEC}=\angle \mathrm{BEF} \quad$ (Vertically opposite angles) $\angle \mathrm{DCE}=\angle \mathrm{EBF}$ (Alternate angles)
$\therefore \quad \Delta \mathrm{DEC} \cong \triangle \mathrm{FEB}$ (AAS axiom of congruency)

$\therefore \quad \mathrm{CD}=\mathrm{BF} \quad$ (CPCT)
But $\mathrm{AB}=\mathrm{CD} \quad$ (Opposite sides of a parallelogram)
Q.36. If the ratio of interior angle to the exterior angle of a regular polygon is
$7: \mathbf{2}$. Find the number of sides in the polygon.
Ans. Ratio of interior angle to the exterior angle of regular polygon $=7: 2$
Let the interior angle $\mathrm{BCD}=7 x^{\circ}$

Let the exterior angle $\mathrm{DCC}_{1}=2 x^{\circ}$
BCC_{1} is a straight line
$\therefore \quad \angle \mathrm{BCD}+\angle \mathrm{DCC}_{1}=180^{\circ} \Rightarrow 7 x^{\circ}+2 x^{\circ}=180^{\circ}$

$$
9 x^{\circ}=180^{\circ} \Rightarrow x=\frac{180^{\circ}}{9} \Rightarrow x=20^{\circ}
$$

$\therefore \quad$ Interior angle $=7 x^{\circ}=7 \times 20^{\circ}=140^{\circ}$, Exterior angle $=2 x^{\circ}$
\Rightarrow Exterior angle $=2 \times 20^{\circ}, \Rightarrow$ Exterior angle $=40^{\circ}$
Hence, number of sides.

$$
\begin{aligned}
& \Rightarrow \frac{360^{\circ}}{n}=40^{\circ} \Rightarrow \frac{360^{\circ}}{n}=40^{\circ} \Rightarrow 360=40 n \Rightarrow 40 n=360 \\
& \Rightarrow n=\frac{360}{40} \Rightarrow n=9
\end{aligned}
$$

Hence, number of sides of regular polygon is 9 .
Q.37. In the given figure, the area of parallelogram ABCD is $90 \mathbf{c m}^{\mathbf{2}}$. State giving reasons : (i) ar. (llgm ABEF) (ii) ar. ($\triangle \mathrm{ABD}$) (iii) ar. ($\triangle B E F$).

Ans. Area of $\| \mathrm{gm} \mathrm{ABCD}=90 \mathrm{~cm}^{2}$
$\mathrm{AF} \| \mathrm{BE}$ are drawn and BD and BF are joined.

$\therefore \quad \mathrm{ABEF}$ is a parallelogram.
(i) Now \|gm ABCD and \|gm ABEF are on the same base and between the same parallel lines.
$\therefore \quad$ Area of $\| \mathrm{gm} \mathrm{ABCD}=$ area of $\| \mathrm{gm} \mathrm{ABEF}$
But area of $\| \mathrm{gm} \mathrm{ABCD}=90 \mathrm{~cm}^{2} \therefore$ Area of $\| \mathrm{gm} \mathrm{ABEF}=90 \mathrm{~cm}^{2}$
(ii) $\because \mathrm{BD}$ and BF are the diagonals of $\| \mathrm{gm} \mathrm{ABCD}$ and $\| \mathrm{gm} \mathrm{ABEF}$ respectively and diagonals of a $l \mid \mathrm{gm}$ bisect it into two triangles of equal area.
$\therefore \quad$ Area $(\triangle \mathrm{ABD})=\frac{1}{2}$ area $(\| \mathrm{gm} \mathrm{ABCD})$

$$
=\frac{1}{2} \times 90 \mathrm{~cm}^{2}=45 \mathrm{~cm}^{2}
$$

(iii) and area $(\triangle \mathrm{BEF})=\frac{1}{2}$ area $(\| \mathrm{gm} \mathrm{ABEF})$

$$
=\frac{1}{2} \times 90 \mathrm{~cm}^{2}=45 \mathrm{~cm}^{2}
$$

Q.38. In the given figure, ABCD is a quadrilateral. A line through D , parallel to $A C$, meets BC produced in P. Prove that : ar. $(\triangle A B P)=$ ar. (quad. $A B C D)$.
Ans. Given : In quad. ABCD , a line through D is drawn parallel to AC and meets BC produced in P .
To Prove : Area $(\triangle \mathrm{ABP})=$ Area (quadrilateral ABCD)
Proof : In quadrilateral $A B C D$,
$\because \quad A C \| P D$ and $\triangle A C D$ and $\triangle A C P$ are on the same base $A C$ and between the same parallel lines.
$\therefore \quad$ Area $(\triangle \mathrm{ACD})=\operatorname{Area}(\triangle \mathrm{ACP})$
Adding area ($\triangle \mathrm{ABC}$) both sides,

$\operatorname{Area}(\triangle \mathrm{ACD})+\operatorname{Area}(\triangle \mathrm{ABC})=\operatorname{Area}(\triangle \mathrm{ACP})+\operatorname{Area}(\triangle \mathrm{ABC})$
\Rightarrow Area (quad. $A B C D)=\operatorname{Area}(\triangle A B P)$
or \quad ar. $(\triangle \mathrm{ABP})=$ ar. (quadrilateral ABCD$)$
Q.39. ABCD is a quadrilateral. If $\mathrm{AL} \perp \mathrm{BD}$ and $\mathrm{CM} \perp \mathrm{BD}$, prove that: ar. $($ quad. ABCD$)=\frac{1}{2} \times \mathrm{BD} \times(\mathrm{AL}+\mathrm{CM})$.
Ans. Given : In quadrilateral $\mathrm{ABCD}, \mathrm{AL} \perp \mathrm{BD}$ and $\mathrm{CM} \perp \mathrm{BD}$.
To Prove : ar. (quad. ABCD$)=\frac{1}{2} \times \mathrm{BD} \times(\mathrm{AL}+\mathrm{CM})$
Proof: In quadrilateral ABCD ,

testlabziom
 STUDY•ASSESS•EXCEL

Again, ar. $(\triangle B C D)=\frac{1}{2} \times B D \times C M$
Adding (i) and (ii), we get
ar. $(\triangle \mathrm{ABD})+$ ar. $(\triangle \mathrm{BCD})=\frac{1}{2} \mathrm{BD} \times \mathrm{AL}+\frac{1}{2} \mathrm{BD} \times \mathrm{CM}$
\Rightarrow ar. $($ quad. ABCD$)=\frac{1}{2} \mathrm{BD}(\mathrm{AL}+\mathrm{CM})$
Q.40. In the given figure, D is the mid-point of $B C$ and E is the mid-point of $A D$.

Prove that : ar. $(\triangle \mathrm{ABE})=\frac{1}{4}$ ar. $(\triangle \mathrm{ABC})$.
Ans. Given : In $\triangle \mathrm{ABC}, \mathrm{D}$ is mid-point of BC and E is mid-point on AD . CE and BE are joined.,
To Prove : ar. $(\triangle \mathrm{ABE})=\frac{1}{4} \mathrm{ar}$. $(\triangle \mathrm{ABC})$.
Proof: In $\triangle A B C, A D$ is the median
$\therefore \quad$ ar. $(\triangle \mathrm{ABD})=$ ar. $(\triangle \mathrm{ACD})$

$$
\begin{equation*}
=\frac{1}{2} \operatorname{ar} .(\Delta \mathrm{ABC}) \tag{i}
\end{equation*}
$$

Again in $\triangle \mathrm{ABD}, \mathrm{BE}$ is the median

$\therefore \quad$ ar. $(\triangle \mathrm{ABE})=\operatorname{ar} .(\triangle \mathrm{EBD})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABD})$

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{1}{2} \operatorname{ar} \cdot(\triangle \mathrm{ABC}) \quad[\text { From (i) }] \\
& =\frac{1}{4} \text { ar. }(\triangle \mathrm{ABC})
\end{aligned}
$$

Q.41. In the given figure, a point D is taken on side $B C$ of $\triangle A B C$ and $A D$ is produced to E, making $D E=A D$. Show that : ar. $(\triangle B E C)=\operatorname{ar} .(\triangle A B C)$.
Ans. Given : In $\triangle \mathrm{ABC}, \mathrm{D}$ is any point on BC, AD is joined and produced to E such that $\mathrm{DE}=\mathrm{AD}$. BE and CE are joined.
To Prove : ar. $(\triangle \mathrm{BEC})=$ ar. $(\triangle \mathrm{ABC})$.
Proof: In $\triangle A B C, \because A D=D E$
$\therefore \quad \mathrm{D}$ is mid-point of AE .

testlabzem
 STUDY•ASSESS • EXCEL

In $\triangle \mathrm{ABE}, \mathrm{BD}$ is the median
$\therefore \quad$ ar. $(\triangle \mathrm{BDE})=$ ar. $(\triangle \mathrm{ABD})$
Similarly, in $\triangle \mathrm{ACE}, \mathrm{CD}$ is the median
$\therefore \quad$ ar. $(\triangle \mathrm{CDE})=$ ar. $(\triangle \mathrm{ACD})$
Adding eqn. (i) and (ii), we get
ar. $(\triangle \mathrm{BDE})+\operatorname{ar} \cdot(\triangle \mathrm{CDE})=\operatorname{ar} .(\Delta \mathrm{ABD})+\operatorname{ar} \cdot(\triangle \mathrm{ACD})$
$\Rightarrow \quad$ ar. $(\triangle \mathrm{BEC})=$ ar. $(\triangle \mathrm{ABC})$.

Q.42. If the medians of a $\triangle \mathrm{ABC}$ intersect at G , show that :

$\operatorname{ar} \cdot(\Delta \mathrm{AGB})=\operatorname{ar} \cdot(\Delta \mathrm{AGC})=\operatorname{ar} \cdot(\Delta \mathrm{BGC})=\frac{1}{3} \operatorname{ar} \cdot(\Delta \mathrm{ABC})$
Ans. Given : In $\triangle \mathrm{ABC}, \mathrm{AD}, \mathrm{BE}$ and CF are the medians of the sides BC, CA and AB respectively intersecting at the point G .
To Prove : ar. $(\Delta \mathrm{AGB})=$ ar. $(\Delta \mathrm{AGC})=$ ar. $(\Delta \mathrm{BGC})=\frac{1}{3}$ ar. $(\Delta \mathrm{ABC})$
Proof: In $\triangle A B C, A D$ is the median
$\therefore \quad$ ar. $(\triangle \mathrm{ABD})=$ ar. $(\triangle \mathrm{ACD})$
Again in $\triangle \mathrm{GBC}, \mathrm{GD}$ is the median
$\therefore \quad$ ar. $(\Delta \mathrm{GBD})=\operatorname{ar} .(\Delta \mathrm{GCD})$
Subtracting (ii) from (i), we get
ar. $(\Delta \mathrm{ABD})-\operatorname{ar} .(\Delta \mathrm{GBD})=\operatorname{ar} .(\Delta \mathrm{ACD})-\operatorname{ar} .(\Delta \mathrm{GCD})$
\Rightarrow ar. $(\Delta \mathrm{AGB})=\operatorname{ar} .(\Delta \mathrm{AGC})$
Similarly, we can prove that

$$
\text { ar. }(\Delta \mathrm{AGC})=\operatorname{ar} .(\Delta \mathrm{BGC})
$$

From eqn. (iii) and (iv), we get ar. $(\Delta \mathrm{AGB})=$ ar. $(\Delta \mathrm{AGC})=$ ar. $(\Delta \mathrm{BGC})$
But ar. $(\Delta \mathrm{AGB})+\operatorname{ar} .(\Delta \mathrm{AGC})+\operatorname{ar} .(\Delta \mathrm{BGC})=\operatorname{ar} .(\Delta \mathrm{ABC})$
ar. $(\Delta \mathrm{AGB})=\operatorname{ar} .(\Delta \mathrm{AGC})=\operatorname{ar} .(\Delta \mathrm{BGC})=\frac{1}{3} \operatorname{ar} .(\Delta \mathrm{ABC})$
Q.43. D is a point on base $B C$ of a $\triangle A B C$ such that $2 B D=D C$. Prove that :
$\operatorname{ar} \cdot(\triangle \mathrm{ABD})=\frac{1}{3} \operatorname{ar} \cdot(\triangle \mathrm{ABC})$.
Ans. Given : In $\triangle \mathrm{ABC}, \mathrm{D}$ is a point on BC such that $2 \mathrm{BD}=\mathrm{DC}$.
To Prove : ar. $(\triangle \mathrm{ABD})=\frac{1}{3}$ ar. $(\Delta \mathrm{ABC})$.

testlabziem
 STUDY•ASSESS•EXCEL

Proof : In $\triangle \mathrm{ABC}, \because 2 \mathrm{BD}=\mathrm{DC} \quad \Rightarrow \quad \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{1}{2}$
$\Rightarrow \mathrm{BD}: \mathrm{DC}=1: 2$
$\therefore \quad$ ar. $(\triangle \mathrm{ABD}):$ ar. $(\triangle \mathrm{ADC})=1: 2$
But ar. $(\triangle \mathrm{ABD})+$ ar. $(\triangle \mathrm{ADC})=$ ar. $(\triangle \mathrm{ABC})$
\Rightarrow ar. $(\triangle \mathrm{ABD})+2$ ar. $(\triangle \mathrm{ABD})=\operatorname{ar} .(\triangle \mathrm{ABC})$
$\Rightarrow 3$ ar. $(\triangle \mathrm{ABD})=$ ar. $(\triangle \mathrm{ABC})$
\Rightarrow ar. $(\triangle \mathrm{ABD})=\frac{1}{3}$ ar. $(\triangle \mathrm{ABC})$.
Q.44. In the given figure, $A D$ is a median of $\triangle A B C$ and P is a point on $A C$ such that $: \operatorname{ar} .(\triangle A D P): \operatorname{ar} .(\triangle A B D)=2: 3$. Find :
(i) AP : PC
(ii) ar. ($\triangle \mathrm{PDC})$: ar. ($\triangle \mathrm{ABC}$).

Ans. Given : In $\triangle A B C, A D$ is median of the triangle, P is a point on $A C$ such that : ar. $(\triangle \mathrm{ADP}): \operatorname{ar} .(\triangle \mathrm{ABD})=2: 3$
Now we have
To Prove: (i) AP : PC
(ii) ar. $(\triangle \mathrm{PDC})$: ar. $(\triangle \mathrm{ABC})$.

Proof : (i) In $\triangle A B C, A D$ is the median.
$\therefore \quad$ ar. $(\triangle \mathrm{ABD})=\operatorname{ar} .(\triangle \mathrm{ADC})$
$\because \quad$ ar. $(\triangle \mathrm{ADP}): \operatorname{ar} .(\triangle \mathrm{ABD})=2: 3$
\Rightarrow ar. $(\triangle \mathrm{ADP}): \operatorname{ar} .(\triangle \mathrm{ADC})=2: 3$

\Rightarrow ar. $(\triangle \mathrm{ADC}): \operatorname{ar} .(\Delta \mathrm{ADP})=3: 2$
$\Rightarrow \frac{\text { ar. }(\triangle \mathrm{ADC})}{\operatorname{ar} \cdot(\triangle \mathrm{ADP})}=\frac{3}{2}$
$\Rightarrow \frac{\operatorname{ar} \cdot(\mathrm{ADC})}{\operatorname{ar} \cdot(\mathrm{ADP})}-1=\frac{3}{2}-1$
(Subtracting both sides)
$\Rightarrow \frac{\operatorname{ar} .(\triangle \mathrm{ADC})-\operatorname{ar} \cdot(\Delta \mathrm{ADP})}{\operatorname{ar} \cdot(\Delta \mathrm{ADP})}=\frac{1}{2}$
$\Rightarrow \frac{\text { ar. }(\triangle \mathrm{ADP})}{\text { ar. }(\triangle \mathrm{PDC})}=\frac{2}{1}$
\Rightarrow ar. $(\triangle \mathrm{ADP}):$ ar. $(\triangle \mathrm{PDC})=2: 1 \therefore \mathrm{AP}: \mathrm{PC}=2: 1$
(ii) Now $\frac{\text { ar. }(\triangle \mathrm{ADP})}{\text { ar. }(\triangle \mathrm{PDC})}=\frac{2}{1} \quad[$ From (ii) $]$

Adding 1 both sides, we get

testlabzem
 STUDY • ASSESS • EXCEL

$\frac{\text { ar. }(\triangle \mathrm{ADP})}{\text { ar. }(\triangle \mathrm{PDC})}+1=\frac{2}{1}+1$
$\frac{\operatorname{ar} .(\triangle \mathrm{ADP})+\operatorname{ar} .(\triangle \mathrm{PDC})}{\operatorname{ar} .(\triangle \mathrm{PDC})}=\frac{2}{1}+1$
$\frac{\text { ar. }(\triangle \mathrm{ADC})}{\text { ar. }(\triangle \mathrm{PDC})}=\frac{3}{1}$
But ar. $(\triangle \mathrm{ADC})=$ ar. $(\triangle \mathrm{ABD}) \quad[$ From (i) $]$
$\therefore \frac{\text { ar. }(\triangle \mathrm{ADB})}{\text { ar. }(\triangle \mathrm{PDC})}=\frac{3}{1} \Rightarrow \frac{\text { ar. }(\triangle \mathrm{PDC})}{\text { ar. }(\triangle \mathrm{ABD})}=\frac{1}{3}$
But ar. $(\triangle \mathrm{ABD})=\frac{1}{2}$ ar. $(\triangle \mathrm{ABC})$
$\therefore \frac{\text { ar. }(\triangle \mathrm{PDC})}{\frac{1}{2} \text { ar. }(\triangle \mathrm{ABC})}=\frac{1}{3}$
$\Rightarrow \frac{2 \mathrm{ar} \cdot(\triangle \mathrm{PDC})}{\text { ar. }(\triangle \mathrm{ABC})}=\frac{1}{3}$
$\Rightarrow \frac{\text { ar. }(\triangle \mathrm{PDC})}{\text { ar. }(\triangle \mathrm{ABC})}=\frac{1}{3 \times 2}=\frac{1}{6}$
Hence, ar. $(\triangle \mathrm{PDC}):$ ar. $(\triangle \mathrm{ABC})=1: 6$

Q.45. In the given figure, P is a point on side $B C$ of $\triangle A B C$ such that

$B P: P C=1: 2$ and Q is a point on $A P$ such that $P Q: Q A=2: 3$.
Show that : ar. $(\triangle \mathrm{AQC}): \operatorname{ar} .(\triangle \mathrm{ABC})=2: 5$.
Ans. Given : In $\triangle \mathrm{ABC}, \mathrm{P}$ is a point on BC such that $\mathrm{BP}: \mathrm{PC}=1: 2 . \mathrm{Q}$ is a point on
AP such that $\mathrm{PQ}: \mathrm{QA}=2: 3$.
To Prove : ar. ($\triangle \mathrm{AQC})$: ar. $(\triangle \mathrm{ABC})=2: 5$
Proof: In $\triangle A B C, P$ is a point on $B C$ such that
$\mathrm{BP}: \mathrm{PC}=1: 2$
$\therefore \quad$ ar. $(\triangle \mathrm{APB}):$ ar. $(\triangle \mathrm{APC})=1: 2$, ar. $(\triangle \mathrm{APC})=\frac{2}{3}$ ar. $(\triangle \mathrm{ABC})$
In $\triangle \mathrm{APC}$,
Q is a point on AP such that $\mathrm{PQ}: \mathrm{QA}=2: 3$
\Rightarrow ar. $(\triangle \mathrm{AQC}):$ ar. $(\triangle \mathrm{PQC})=3: 2$
or \quad ar. $(\triangle \mathrm{AQC})=\frac{3}{5}$ ar. $(\triangle \mathrm{APC})$

testlabzam
 STUDY•ASSESS•EXCEL

$$
\begin{aligned}
&=\frac{3}{5} \times \frac{2}{3} \times \mathrm{ar} \cdot(\triangle \mathrm{ABC}) \\
&=\frac{2}{5} \operatorname{ar} \cdot(\triangle \mathrm{PBC}) \\
& \Rightarrow \quad \frac{\text { ar. }(\triangle \mathrm{AQC})}{\text { ar. }(\triangle \mathrm{ABC})}=\frac{2}{5} \\
& \therefore \quad \text { ar. }(\triangle \mathrm{AQC}): \operatorname{ar} .(\triangle \mathrm{ABC})=2: 5
\end{aligned}
$$

Q.46. In the given figure, diagonals $P R$ and $Q S$ of the parallelogram $P Q R S$ intersect at point O and $L M$ is parallel to PS. Show that :
(i) 2 ar. $(\triangle \mathrm{POS})=\operatorname{ar}$. (ll gm PMLS $)$
(ii) ar. $(\Delta P O S)+\operatorname{ar} \cdot(\triangle Q O R)=\frac{1}{2}$ ar. $(\| \mathrm{gm}$ PQRS $)$
(iii) ar. $(\triangle \mathrm{POS})+\operatorname{ar} \cdot(\triangle Q O R)=\operatorname{ar} \cdot(\triangle \mathrm{POQ})+\operatorname{ar} \cdot(\triangle S O R)$

Ans. Given : PQRS is a $\| \mathrm{gm}$ in which diagonals PR and QS intersect at $\mathrm{O} . \mathrm{LM} \| \mathrm{PS}$.
To Prove : (i) 2 ar. $(\triangle \mathrm{POS})=$ ar. (llgm PMLS $)$
(ii) ar. $(\Delta \mathrm{POS})+\operatorname{ar} .(\Delta \mathrm{QOR})=\frac{1}{2}$ ar. (llgm PQRS $)$
(iii) ar. $(\triangle \mathrm{POS})+\mathrm{ar} .(\Delta \mathrm{QOR})=\operatorname{ar} \cdot(\Delta \mathrm{POQ})+\operatorname{ar} \cdot(\Delta \mathrm{SOR})$

Proof: In parallelogram PQRS
(i) $\quad \mathrm{PS} \| \mathrm{LM}$
(Given)
and $\quad \mathrm{PM} \| \mathrm{SL} \quad[\because \mathrm{PQ} \| \mathrm{SR}$; opposite sides of $\| \mathrm{gm}$ are parallel]
$\therefore \quad$ PMLS is a $l l \mathrm{gm}$
$\Delta \mathrm{POS}$ and II gm PMLS are on the same base PS and between the same parallel lines PS and LM.
$\therefore \quad$ ar. $(\Delta \mathrm{POS})=\frac{1}{2}$ ar. (llgm PMLS $)$
$\Rightarrow \quad 2 \mathrm{ar} .(\Delta \mathrm{POS})=$ ar. (ll gm PMLS $)$
(ii) $\mathrm{QR} \| \mathrm{LM}$ and $\mathrm{MQ} \| \mathrm{LR} \quad[\because \mathrm{LM} \| \mathrm{PS}$ and $\mathrm{PS} \| \mathrm{QR}][\because \mathrm{PQ} \| \mathrm{SR}]$
$\therefore \quad \mathrm{MQRL}$ is all gm.
$\therefore \quad$ QOR and II gm MQRL are on the same base QR and between the same II lines QR and LM.
$\therefore \quad 2$ ar. $(\Delta \mathrm{QOR})=$ ar. $(\| \mathrm{gm} \mathrm{MQRL})$
Adding (i), (ii), we get
$2 \operatorname{ar} .(\Delta \mathrm{POS})+2 \mathrm{ar} .(\Delta \mathrm{QOR})=\operatorname{ar} .(\| g m$ PMLS $)+\operatorname{ar} .(\| g m ~ M Q R L)$
$\Rightarrow 2[\mathrm{ar} .(\Delta \mathrm{POS})+\mathrm{ar} .(\Delta \mathrm{QOR})=\mathrm{ar} .(\| \mathrm{gm} \mathrm{PQRS})$

testabzun
 STUDY•ASSESS•EXCEL

$\Rightarrow \operatorname{ar}(\Delta \mathrm{POS})+$ ar. $(\Delta \mathrm{QOR})=\frac{1}{2}$ ar. $(\| \mathrm{gm}$ PQRS $)$
(iii) As in part (ii), we can prove that
ar. $(\triangle \mathrm{POQ})+$ ar. $(\Delta \mathrm{SOR})=\frac{1}{2}$ ar. (llgm PQRS) \ldots (iv)
From (iii) and (iv), we get
ar. $(\Delta \mathrm{POS})+\operatorname{ar} .(\Delta \mathrm{QOR})=\operatorname{ar} .(\Delta \mathrm{POQ})+\operatorname{ar} .(\Delta \mathrm{SOR})$
Q.47. In parallelogram $A B C D$. P is a point on side $A B$ and Q is a point on side $B C$. Prove that :
(i) $\triangle C P D$ and $\triangle A Q D$ are equal in area.
(ii) $\operatorname{ar} \cdot(\triangle \mathrm{AQD})=\operatorname{ar} \cdot(\triangle \mathrm{APD})+\operatorname{ar} \cdot(\triangle \mathrm{CPB})$

Ans. Given : \| gm ABCD in which P is a point on AB and Q is a point on BC .
To Prove : (i) ar. $(\triangle \mathrm{CPD})=$ ar. $(\triangle \mathrm{AQD})$
(ii) ar. $(\triangle \mathrm{AQD})=\operatorname{ar} .(\triangle \mathrm{APD})+\operatorname{ar} .(\Delta \mathrm{CPB})$

Proof: In parallelogram $A B C D$,
$\triangle C P D$ and $\| \mathrm{gm} \mathrm{ABCD}$ are the same base CD and between the same parallels $A B$ and CD.
$\therefore \quad$ ar. $(\triangle \mathrm{CPD})=\frac{1}{2}$ ar. (llgm ABCD$)$
$\triangle \mathrm{AQD}$ and $\| \mathrm{gm} \mathrm{ABCD}$ are on the same base AD and between the same \|l lines AD and BC .
$\therefore \quad$ ar. $(\triangle \mathrm{AQD})=\frac{1}{2}$ ar. (Il gm ABCD)
From (i) and (ii), we get
ar. $(\triangle \mathrm{CPD})=\operatorname{ar} .(\triangle \mathrm{AQD})$
(ii) ar. $(\triangle \mathrm{AQD})=\frac{1}{2}$ ar. (ll gm ABCD)
$\Rightarrow \quad 2 \mathrm{ar} .(\triangle \mathrm{AQD})=$ ar. $(\| \mathrm{gm} \mathrm{ABCD})$
ar. $(\triangle \mathrm{AQD})+$ ar. $(\triangle \mathrm{AQD})=$ ar. $(\| \mathrm{gm} \mathrm{ABCD}) . . .(\mathrm{iii})$
But, ar. $(\triangle \mathrm{AQD})=$ ar. $(\triangle \mathrm{CPD})$
From (iii) and (iv), we get
ar. $(\triangle \mathrm{AQD})+\operatorname{ar} .(\triangle \mathrm{CPD})=$ ar. $(\| \mathrm{gm} \mathrm{ABCD})$
\Rightarrow ar. $(\triangle \mathrm{AQD})+$ ar. $(\Delta \mathrm{CPD})=\operatorname{ar} .(\triangle \mathrm{APD})+\operatorname{ar} .(\Delta \mathrm{CPD})+$ ar. $(\Delta \mathrm{CPB})$
\Rightarrow ar. $(\triangle \mathrm{AQD})=\mathrm{ar} .(\triangle \mathrm{APD})+\operatorname{ar} .(\Delta \mathrm{CPB})$

testlabzem

Q.48. In the given figure, M and N are the mid-points of the sides $D C$ and $A B$ respectively of the parallelogram $A B C D$. If the area of parallelogram ABCD is $48 \mathrm{~cm}^{2}$;
(i) state the area of the triangle BEC.
(ii) name the parallelogram which is equal in area to the triangle BEC.

Ans. Given : ABCD is II gm in which M and N are the mid-points of sides DC and AB respectively. BM is joined and produced to meet AD produced at E . CE is joined : Ar. $(\| \mathrm{gm} \mathrm{ABCD})=48 \mathrm{~cm}^{2}$.
To Prove : (i) To find ar. ($\triangle \mathrm{BEC}$)
(ii) To name the ll gm which is equal in area to the $\triangle \mathrm{BEC}$.

Proof: In parallelogram $A B C D$,
(i) $\triangle \mathrm{BEC}$ and \| gm ABCD are on the same base BC and between the same \| lines $A D$ and $B C$.
$\therefore \quad$ ar. $(\triangle \mathrm{BEC})=\frac{1}{2}$ ar. (II gm ABCD $)$
But, ar. (ll gm ABCD) $=48 \mathrm{~cm}^{2}$
From eqn. (i) and (ii), we get
ar. $(\triangle \mathrm{BEC})=\frac{1}{2} \times 48 \mathrm{~cm}^{2}=24 \mathrm{~cm}^{2}$
(ii) M and N are mid-points of AB and CD .

In $\triangle \mathrm{ABE}, \mathrm{MN}$ will be $\|$ to AE . Also, MN bisects the $\| \mathrm{gm} \mathrm{ABCD}$ in two
equal parts. Now, MN \| BC and $\mathrm{BN} \| \mathrm{MC}$. Therefore, BNMC is a $\| \mathrm{gm}$.
$\therefore \quad$ ar. (ll gm BNMC) $=\frac{1}{2}$ ar. (Il gm ABCD)
From (i) and (iii), we get
ar. $(\triangle \mathrm{BEC})=$ ar. $(\| \mathrm{gm}$ BNMC $)$
$\therefore \quad B N M C$ is the required $\| \mathrm{gm}$ which is equal in area to $\triangle \mathrm{BEC}$.
Q.49. ABCD is a parallelogram, a line through A cuts DC at point P and $B C$ produced at Q. Prove that triangle $B C P$ is equal in area to triangle $D P Q$.
Ans. Given : Il gm ABCD in which a line through A cuts DC at P and BC produced at Q .
To Prove : ar. $(\triangle \mathrm{BCP})=$ ar. $(\Delta \mathrm{DPQ})$
Proof : $\triangle \mathrm{APB}$ and II gm ABCD are on the same base

testlabzam
 STUDY•ASSESS • EXCEL

AB and between the same $\|$ lines AB and CD .
$\therefore \quad$ ar. $(\triangle \mathrm{APB})=\frac{1}{2}$ ar. $(\| l$ gm ABCD$)$
$\triangle \mathrm{ADQ}$ and \| gm ABCD are on the same base AD and between the same II lines $A D$ and $B Q$.
$\therefore \quad$ ar. $(\triangle \mathrm{ADQ})=\frac{1}{2}$ ar. (II gm ABCD)
Adding eqn. (i) and (ii), we get
ar. $(\triangle \mathrm{APB})+\operatorname{ar} .(\triangle \mathrm{ADQ})=\frac{1}{2}$ ar. $\left(\|\| \mathrm{gm} \mathrm{ABCD})+\frac{1}{2}(\| \mathrm{gm} \mathrm{ABCD})\right.$
\Rightarrow ar. $($ quad. $A D Q B)-$ ar. $(\triangle B P Q)=$ ar. $(\| g m ~ A B C D)$
\Rightarrow ar. (quadrilateral $A D Q B)-$ ar. $(\triangle B P Q)$

$$
=\text { ar. (quadrilateral } \mathrm{ADQB}-\text { ar. }(\triangle \mathrm{DCQ})
$$

$\Rightarrow \quad$ ar. $(\triangle \mathrm{BPQ})=$ ar. $(\Delta \mathrm{DCQ})$
Subtracting ar. ($\triangle \mathrm{PCQ}$) from both sides, we get
ar. $(\Delta \mathrm{BPQ})-\operatorname{ar} .(\Delta \mathrm{PCQ})=\operatorname{ar} .(\Delta \mathrm{DCQ})-\operatorname{ar} .(\Delta \mathrm{PCQ})$
ar. $(\triangle \mathrm{BCP})=$ ar. $(\triangle \mathrm{DPQ})$.
Q.50. In the adjoining figure, ABCD is a parallelogram and O is any point on its
diagonal AC. Show that : ar. $(\triangle A O B)=\operatorname{ar} .(\triangle A O D)$.
Ans. In llgm $\mathrm{ABCD}, \mathrm{O}$ is any point on its diagonal OB and OD are joined.
To Prove : ar. $(\triangle \mathrm{AOB})=$ ar. $(\Delta \mathrm{AOD})$
Construction : Join BD which intersects AC at P.
Proof : In parallelogram ABCD diagonals of a ll gm bisect each other.
$\therefore \quad \mathrm{AP}=\mathrm{PC}$ and $\mathrm{BP}=\mathrm{PD}$
In $\triangle \mathrm{ABD}, \mathrm{AP}$ is its median
$\therefore \quad$ ar. $(\triangle \mathrm{ABP})=$ ar. $(\triangle \mathrm{ADP})$
Similarly in $\triangle \mathrm{OBD}$, OP is the median
$\therefore \quad$ ar. $(\Delta \mathrm{OBP})=$ ar. $(\Delta \mathrm{ODP})$
Adding (i) and (ii), we get

ar. $(\triangle \mathrm{APB})+\mathrm{ar} .(\triangle \mathrm{OBP})=\mathrm{ar} .(\Delta \mathrm{ADP})+\operatorname{ar} .(\Delta \mathrm{ODP})$
\Rightarrow ar. $(\triangle \mathrm{AOB})=\operatorname{ar} .(\triangle \mathrm{AOD})$.

testlabzem
 STUDY•ASSESS•EXCEL

Q.51. In the given figure, XY \|I BC, BE II AC and CF II AB. Prove that : ar. $(\triangle \mathrm{ABE})=\operatorname{ar} .(\triangle \mathrm{ACF})$
Ans. Given : In the figure, $X Y\|B C, B E\| A C$ and $C F \| A B$.
To Prove : ar. $(\triangle \mathrm{ABE})=$ ar. $(\triangle \mathrm{ACF})$
Proof : $\triangle \mathrm{ABE}$ and $\| \mathrm{gm}$ BCYE are on the same base BE and between the same parallels
$\therefore \quad$ ar. $(\triangle \mathrm{ABE})=\frac{1}{2}$ ar. (Il gm BCYE)
Similarly $\triangle \mathrm{ACF}$ and $\| \mathrm{gm}$ BCFX are on the same base CF and between the same parallels $\mathrm{AB} \| \mathrm{CF}$.

$\therefore \quad$ ar. $(\triangle \mathrm{ACF})=\frac{1}{2}$ ar. (II gm BCFX)
But II gm BCFX and II gm BCYE are on the same base BC and between the same parallels.
$\therefore \quad$ ar. $(\| \mathrm{gm}$ BCFX $)=$ ar. $(\| \mathrm{gm}$ BCYE $)$
From eqn. (i), (ii) and (iii), we get

$$
\begin{equation*}
\text { ar. }(\triangle \mathrm{ABE})=\operatorname{ar} .(\triangle \mathrm{ACF}) . \tag{iii}
\end{equation*}
$$

Q.52. In the given figure, the side $A B$ of $\| \mathrm{gm} A B C D$ is produced to a point P. A line through A drawn parallel to CP meets CB produced in \mathbf{Q} and the parallelogram PBQR is completed. Prove that : ar. (ll gm ABCD) = ar. (llgm BPRQ).
Ans. Given : Side AB of II gm ABCD is produced to P. CP is joined, through A, a line is drawn parallel to $C P$ meeting
 CB produced at Q and $\| \mathrm{gm} \operatorname{PBQR}$ is completed as shown in the figure.
To Prove : ar. (llgm ABCD) =ar. (ll gm BPRQ)
Construction : Join AC and PQ.
Proof : In parallelogram $A B C D, \triangle A Q C$ and $\triangle A Q P$ are on the same base $A Q$ and between the same parallels, then ar. $(\Delta \mathrm{AQC})=$ ar. $(\triangle \mathrm{AQP})$
Subtracting ar. ($\triangle \mathrm{AQB})$ from both sides,
ar. $(\triangle \mathrm{AQC})-\operatorname{ar} .(\triangle \mathrm{AQB})=\operatorname{ar} .(\triangle \mathrm{AQP})-\operatorname{ar} .(\triangle \mathrm{AQB})$
$\Rightarrow \quad$ ar. $(\triangle \mathrm{ABC})=\operatorname{ar} .(\triangle \mathrm{BPQ})$
But ar. $(\triangle \mathrm{ABC})=\frac{1}{2}$ ar. $(\| \mathrm{gm} \mathrm{ABCD})$
and ar. $(\triangle \mathrm{BPQ})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{BPRQ})$

testlabzes
 STUDY•ASSESS•EXCEL

From (i), (ii) and (iii), we get

$$
=\frac{1}{2} \mathrm{ar} .(\| \mathrm{gm} \mathrm{ABCD})=\frac{1}{2} \mathrm{ar} .(\| \mathrm{gm} \mathrm{BPRQ})
$$

\Rightarrow ar. $(\| \mathrm{gm} \mathrm{ABCD})=$ ar. $(\mid l \mathrm{gm}$ BPRQ $)$.
Q.53. In the given figure, $A P$ is parallel to $B C, B P$ is parallel to $C Q$. Prove that the areas of triangles $A B C$ and $B Q P$ are equal.
Ans. Given : AP \| BC and $\mathrm{BP} \| \mathrm{CQ}$.
To Prove : ar. $(\triangle \mathrm{ABC})=$ ar. $(\triangle \mathrm{BPQ})$
Construction : Join PC.
Proof : $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BPC}$ are on the same base BC and between the same II lines AP and BC.
$\therefore \quad$ ar. $(\triangle \mathrm{ABC})=$ ar. $(\triangle \mathrm{BPC})$
$\therefore \quad \Delta \mathrm{BPC}$ and $\triangle \mathrm{BQP}$ are on the same base BP and between the same II lines, $B P$ and $C Q$.
$\therefore \quad$ ar. $(\Delta \mathrm{BPC})=$ ar. $(\Delta \mathrm{BQP})$
From (i) and (ii), we get

ar. $(\triangle \mathrm{ABC})=\operatorname{ar} .(\triangle \mathrm{BQP})$
Q.54. In the figure given along side squares $A B D E$ and AFGC are drawn on the side AB and the hypotenuse AC of the right triangle ABC . If BH is perpendicular to FG, prove that :
(i) $\Delta \mathrm{EAC} \cong \Delta \mathrm{BAF}$
(ii) Area of square $\mathrm{ABDE}=$ Area of rectangle ARHF.

Ans. Given : A right angled $\triangle \mathrm{ABC}$ in which $\angle \mathrm{B}=90^{\circ}$. Square ABDE and AFGC are drawn on side AB and hypotenuse AC of $\triangle \mathrm{ABC}$. EC and BF are joined.
 $\mathrm{BH} \perp \mathrm{FG}$ meeting AC at R .
To Prove : (i) $\triangle E A C \cong \triangle B A F$
(ii) ar. (square ABDE$)=$ ar. (rectangle ABHF)

Proof: (i) $\angle \mathrm{EAC}=\angle \mathrm{EAB}+\angle \mathrm{BAC}$
$\Rightarrow \angle \mathrm{EAC}=90^{\circ}+\angle \mathrm{BAC}$
$\angle \mathrm{BAF}=\angle \mathrm{FAC}+\angle \mathrm{BAC}$
$\Rightarrow \angle \mathrm{BAF}=90^{\circ}+\angle \mathrm{BAC}$
From (i) and (ii), we get

$$
\begin{equation*}
\angle \mathrm{EAC}=\angle \mathrm{BAF} \tag{ii}
\end{equation*}
$$

In $\triangle \mathrm{EAC}$ and $\triangle \mathrm{BAF}$, we have, $\mathrm{EA}=\mathrm{AB}$ $\angle \mathrm{EAC}=\angle \mathrm{BAF}$ and $\mathrm{AC}=\mathrm{AF}$

testlabzism
 STUDY•ASSESS •EXCEL

$\therefore \quad \triangle \mathrm{EAC} \cong \triangle \mathrm{BAF} \quad$ (SAS axiom of congruency)
(ii) $\triangle \mathrm{EAC} \cong \triangle \mathrm{BAF}$ [Proved in part (i) above]
$\therefore \quad$ ar. $(\triangle \mathrm{EAC})=$ ar. $(\triangle \mathrm{BAF})$
$\angle \mathrm{ABD}+\angle \mathrm{ABC}=90^{\circ}+90^{\circ} \Rightarrow \angle \mathrm{ABD}+\angle \mathrm{ABC}=180^{\circ}$
$\therefore \quad \mathrm{DBC}$ is a straight line.
Now, $\triangle \mathrm{EAC}$ and square ABDE are on the same base AE and between the same II lines AF and BH .
$\therefore \quad$ ar. $(\triangle \mathrm{EAC})=\frac{1}{2}$ ar. (square ABDE$)$
Again, $\triangle \mathrm{BAF}$ and rectangle ARHF are on the same base AF and between the same II lines AF and BH.
$\therefore \quad$ ar. $(\triangle \mathrm{BAF})=\frac{1}{2}$ ar. (rectangle ARHF)
Since, ar. $(\triangle \mathrm{EAC})=\operatorname{ar} .(\triangle \mathrm{BAF})$
From (ii) and (iii), we get
$\frac{1}{2}$ ar. $($ square ABDE$)=\frac{1}{2}$ ar. $($ rectangle ARHF)
\Rightarrow ar. $($ square $A B D E)=$ ar. $($ rectangle $A R H F)$
Q.55. M is the mid-point of side $A B$ of rectangle $A B C D$. CM is produced to meet DA produced at point N. Prove that the parallelogram ABCD and triangle CDN are equal in area.
Ans. Given : M is mid-point of side $A B$ of rectangle $A B C D$.
CM is joined and produced to meet DA produced at N .
To Prove : ar. $(\mathrm{ABCD})=$ ar. $(\triangle \mathrm{CDN})$
Proof: In $\triangle A M N$ and $\triangle B M C$.
 $\angle \mathrm{AMN}=\angle \mathrm{BMC} \quad$ (Vertically opposite angles)
$\mathrm{AM}=\mathrm{MB} \quad(\because \mathrm{M}$ is mid-point of AB$)$ $\angle \mathrm{A}=\angle \mathrm{B}=90^{\circ}$
$\therefore \quad \triangle \mathrm{AMN} \cong \triangle \mathrm{BMC} \quad$ (ASA axiom of congruency)
$\therefore \quad$ ar. $(\triangle \mathrm{AMN})=$ ar. $(\Delta \mathrm{BMC})$
Adding area of quad. AMCD both sides, ar. $(\triangle \mathrm{AMN})+$ ar. (quad. AMCD)
$=$ ar. $(\triangle \mathrm{BMC})+$ ar. (quad. AMCD$)$
\Rightarrow ar. $(\triangle C D N)=$ ar. $($ rectangle $A B C D)$.
Q.56. In the adjoining figure, $C E$ is drawn parallel to $D B$ to meet $A B$ produced at E. Prove that : ar. (quad. ABCD$)=$ ar. $(\triangle \mathrm{DAE})$.
Ans. Given : In the given figure, CE is drawn parallel to BD which meets AB produced at E . DE is joined.

To Prove :

$$
\text { ar. }(\text { quad. } \mathrm{ABCD})=\text { ar. }(\triangle \mathrm{DAE})
$$

Proof : $\triangle \mathrm{DBE}$ and $\triangle \mathrm{DBC}$ are on the same base BD and between the same parallels.
$\therefore \quad$ ar. $(\triangle \mathrm{DBE})=$ ar. $(\triangle \mathrm{DBC})$
Adding ar. ($\triangle \mathrm{ABD}$) both sides,

ar. $(\triangle \mathrm{DBE})+$ ar. $(\triangle \mathrm{ABD})=$ ar. $(\Delta \mathrm{DBC})+$ ar. $(\triangle \mathrm{ABD})$
\Rightarrow ar. $(\triangle \mathrm{ADE})=$ ar. (quad ABCD$)$
Hence, ar. (quad $A B C D)=$ ar. $(\triangle D A E)$.
Q.57. In the adjoining figure, ABCD is a parallelogram. Any line through A cuts $D C$ at a point P and $B C$ produced at Q. Prove that : ar. $(\triangle B P C)=a r .(\triangle D P Q)$.
Ans. Given : ABCD is a II gm. A line through A, intersects DC at a point P and BC produced at Q .
To Prove : ar. $(\triangle \mathrm{BPC})=$ ar. $(\Delta \mathrm{DPQ})$

Construction : Join AC and BP.
Proof : $\triangle \mathrm{BPC}$ and $\triangle \mathrm{APC}$ are on the same base PC and between the same parallels.
$\therefore \quad$ ar. $(\triangle \mathrm{BPC})=$ ar. $(\triangle \mathrm{APC})$
Again $\triangle \mathrm{AQC}$ and $\triangle \mathrm{DQC}$ and on the same base QC and between the same parallels.

$$
\begin{align*}
\therefore \quad \text { ar. }(\triangle \mathrm{AQC}) & =\operatorname{ar} .(\triangle \mathrm{DQC}) \quad \ldots(\mathrm{ii}) \tag{ii}\\
\text { ar. }(\triangle \mathrm{BPC}) & =\operatorname{ar} .(\triangle \mathrm{APC})=\operatorname{ar} .(\triangle \mathrm{AQC})-\operatorname{ar} .(\Delta \mathrm{PQC}) \\
& =\operatorname{ar} \cdot(\Delta \mathrm{DQC})-\operatorname{ar} \cdot(\Delta \mathrm{PQC})=\operatorname{ar} .(\Delta \mathrm{DPQ}) .
\end{align*}
$$

Q.58. In the given figure, $A B\|D C\| E F, A D \| B E$ and $|\mid$ ar. $(\| \mathrm{gm} \mathrm{DEFH})=\operatorname{ar}$. $(\| \mathrm{gm} \mathrm{ABCD})$.
Ans. Given : From figure, $\mathrm{AB}\|\mathrm{DC}\| \mathrm{EF}, \mathrm{AD} \| \mathrm{BE}$ and $\mathrm{DE} \| \mathrm{AF}$. To Prove : ar. (ll gm DEFH) = ar. (ll gm ABCD)
Proof : In II gm ABCD and II gm ADEG are on the same base AD and between the same parallels.
$\therefore \quad$ ar. $(\| \mathrm{gm} \mathrm{ABCD})=$ ar. $(\| \mathrm{gm}$ ADGE $)$

Question Bank

testlabziom
 STUDY•ASSESS•EXCEL

Similarly II gm DEFH and II gm ADEG are on the same base DE and between the same parallels.
$\therefore \quad$ ar. $(\| l \mathrm{gm} \mathrm{DEFH})=$ ar. $(\mid l \mathrm{gm}$ ADGE $)$
From (i) and (ii), we get
ar. $(\| \mathrm{gm} \mathrm{ABCD})=\mathrm{ar}$. $(\| \mathrm{gm} \mathrm{DEFH})$.
Q.59. In the following figure, $A C\|P S\| Q R$ and PQ || DB || SR. Prove that area of quadrilateral PQRS $=2 \times$ ar. (quad ABCD).
Ans. Given : In the figure, ABCD and PQRS are two quadrilaterals such that $A C\|P S\| Q R$ and $P Q\|D B\| S R$.
To Prove : ar. (quad. PQRS) $=2 \times$ ar. (quad. $A B C D$)
Proof : In \| gm PQRS, AC \| PS \| QR and PQ\|DB\|SR. Similarly AQRC and APSC are also Il gms.

$\because \triangle A B C$ and II gm AQRC are on the same base AC and between the same parallels, then
\therefore ar. $(\triangle \mathrm{ABC})=\frac{1}{2} \operatorname{ar} .(\mathrm{AQRC})$
Similarly, ar. $(\triangle \mathrm{ADC})=\frac{1}{2}$ ar. $($ APSC $)$
Adding (i) and (ii), we get
\Rightarrow ar. $(\triangle \mathrm{ABC})+\operatorname{ar} .(\triangle \mathrm{ADC})=\frac{1}{2} \operatorname{ar} .(\mathrm{AQRC})+\frac{1}{2} \operatorname{ar} .(\mathrm{APSC})$
ar. $($ quad. ABCD$)=\frac{1}{2}$ ar. (quad. PQRS)
\Rightarrow ar. (quad. PQRS) $=2$ ar. (quad. ABCD).
Q.60. D is the mid-point of side $A B$ of the triangle $A B C, E$ is mid-point of $C D$ and F is mid-point of AE. Prove that : $8 \times$ ar. $(\triangle \mathrm{AFD})=\operatorname{ar} .(\triangle \mathrm{ABC})$.
Ans. Given : $\triangle \mathrm{ABC}$ in which D is the mid-point of $\mathrm{AB} ; \mathrm{E}$ is the mid-point of CD and F is the mid-point of AE . To Prove : $8 \times$ ar. $(\triangle \mathrm{AFD})=$ ar. $(\Delta \mathrm{ABC})$ Proof : In $\triangle \mathrm{ABC}, \mathrm{D}$ is mid-point of AB (Given)
$\therefore \quad \mathrm{CD}$ is the median of AB

$$
\begin{align*}
& \text { ar. }(\triangle \mathrm{ADC})=\frac{1}{2} \text { ar. }(\triangle \mathrm{ABC}) \\
\Rightarrow \quad & 2 \text { ar. }(\triangle \mathrm{ADC})=\operatorname{ar} \cdot(\Delta \mathrm{ABC}) \tag{i}
\end{align*}
$$

E is the mid-point of $C D$

testlabzam
 STUDY•ASSESS • EXCEL

$\therefore \quad \mathrm{AE}$ is the median of CD in $\triangle \mathrm{ADC}$
$\therefore \quad$ ar. $(\triangle \mathrm{ADE})=\frac{1}{2}$ ar. $(\triangle \mathrm{ADC}) \Rightarrow 2$ ar. $(\triangle \mathrm{ADE})=\frac{1}{2} \operatorname{ar} .(\triangle \mathrm{ADC})$
\Rightarrow ar. $(\triangle \mathrm{ADC})=2$ ar. $(\triangle \mathrm{ADE})$
From (i) and (ii), we get
2×2 ar. $(\triangle \mathrm{ADE})=\operatorname{ar} .(\triangle \mathrm{ABC})$
$\Rightarrow 4$ ar. $(\triangle \mathrm{ADE})=\mathrm{ar} .(\triangle \mathrm{ABC})$
F is the mid-point of $\mathrm{AE}, \therefore 2 \mathrm{ar} .(\triangle \mathrm{AFD})=\mathrm{ar}$. $(\triangle \mathrm{ADE})$
\Rightarrow ar. $(\triangle \mathrm{ADE})=2$ ar. $(\triangle \mathrm{ADF})$
From (iii) and (iv), we get
4×2 ar. $(\triangle \mathrm{AFD})=\operatorname{ar} .(\triangle \mathrm{ABC})$
Hence, $8 \times$ ar. $(\triangle \mathrm{AFD})=$ ar. $(\triangle \mathrm{ABC})$
Q.61. ABCD is a parallelogram. \mathbf{P} and Q are the mid-points of sides $A B$ and $A D$ respectively. Prove that area of triangle $\mathrm{APQ}=\frac{1}{8}$ of the area of parallelogram ABCD.

Ans. Given : \| gm $A B C D$ in which P is the mid-point of $A B$ and Q is the mid-point of AD . PQ is joined.
To Prove : ar. $(\triangle \mathrm{APQ})=\frac{1}{8}$ ar. $(\| \mathrm{gm} \mathrm{ABCD})$
Construction : Join PD and BD.
Proof : In parallelogram $A B C D$, diagonal of a $l \mid$ gm divides it into two equal parts. Since, $B D$ is diagonal, then ar. $(\| \mathrm{gm} \mathrm{ABCD})=2 \mathrm{ar} .(\triangle \mathrm{ABD})$
In $\triangle \mathrm{ABD}, \mathrm{DP}$ is the median of AB .
$\therefore \quad$ ar. $(\triangle \mathrm{ABD})=2$ ar. $(\triangle \mathrm{ADP})$
From (i) and (ii), we get, ar. (ll gm ABCD$)=2$ [2 ar. $(\triangle \mathrm{ADP})$]
$\Rightarrow \quad$ ar. (ll gm ABCD) $=4$ ar. $(\triangle \mathrm{ADP})$
In $\triangle \mathrm{ADP}, \mathrm{PQ}$ is median of AD .
$\therefore \quad$ ar. $(\triangle \mathrm{ADP})=2$ ar. $(\triangle \mathrm{AQP})$
From eqn. (iii) and (iv), we get

$$
\text { ar. }(\| \mathrm{gm} \mathrm{ABCD})=4 \times 2 \text { ar. }(\Delta \mathrm{APQ}) \Rightarrow \text { ar. }(\| \mathrm{gm} \mathrm{ABCD})=8 \text { ar. }(\Delta \mathrm{APQ})
$$

testlab2.em
 STUDY•ASSESS•EXCEL

Hence, ar. $(\triangle \mathrm{APQ})=\frac{1}{8}$ ar. (ll gm ABCD $)$.
Q.62. In the given triangle $P Q R, L M$ is parallel to $Q R$ and $P L: L Q=3: 4$. Calculate the value of ratio :
(i) $\frac{\mathrm{PL}}{\mathrm{PQ}}, \frac{\mathrm{PM}}{\mathrm{PR}}$ and $\frac{\mathrm{LM}}{\mathrm{QR}}$
(ii) $\frac{\text { Area of } \triangle L M N}{\text { Area of } \triangle M N R}$
(iii) $\frac{\text { Area of } \triangle L Q M}{\text { Area of } \triangle L Q N}$

Ans. (ii) In $\triangle P Q R, L$ is mid-point of $P Q$ and M is mid-point of $P R$,

$$
\begin{aligned}
& \quad \frac{\mathrm{PL}}{\mathrm{LQ}}=\frac{3}{4} \Rightarrow \frac{\mathrm{PL}}{\mathrm{PL}+\mathrm{LQ}}=\frac{3}{3+4} \Rightarrow \frac{\mathrm{PL}}{\mathrm{PQ}}=\frac{3}{7} \\
& \text { (GMiven) } \| \mathrm{QR} \text { in } \Delta \mathrm{PQR} \\
& \therefore \quad \frac{\mathrm{PM}}{\mathrm{PR}}=\frac{\mathrm{PL}}{\mathrm{PQ}}=\frac{3}{7} \quad \therefore \frac{\mathrm{PM}}{\mathrm{PR}}=\frac{3}{7} \\
& \text { Again, } \frac{\mathrm{PM}}{\mathrm{PR}}=\frac{\mathrm{PL}}{\mathrm{PQ}}=\frac{\mathrm{LM}}{\mathrm{QR}}=\frac{3}{7} \\
& \text { Thus, } \frac{\mathrm{LM}}{\mathrm{QR}}=\frac{3}{7} \\
& \text { (ii) } \frac{\text { ar. }(\Delta \mathrm{LMN})}{\text { ar. }(\triangle \mathrm{MNR})}=\frac{\mathrm{LN}}{\mathrm{NR}}=\frac{\mathrm{LM}}{\mathrm{QR}}=\frac{3}{7} \quad[\because \Delta s \mathrm{LMN} \text { and } \mathrm{QNR}] \\
& \text { (iii) } \frac{\text { ar. }(\Delta \mathrm{LQM})}{\text { ar. }(\Delta \mathrm{LQN})}=\frac{\mathrm{LM}}{\mathrm{QN}}=\frac{\mathrm{LN}}{\mathrm{NR}}=\frac{\mathrm{LM}}{\mathrm{QR}}=\frac{3}{7} .
\end{aligned}
$$

