STUDY•ASSESS •EXCEL

Question Bank

 Symmetry Reflection, Loci and Constructions1. Construct a rhombus $A B C D$ with each side of length 5 cm and $\angle A B C=135^{\circ}$.
Draw its lines of symmetry.
Solution :

Draw a line segment $\mathrm{AB}=5 \mathrm{~cm}$. At B , draw
$\angle \mathrm{ABC}=135^{\circ}$ and cut off $\mathrm{BC}=5 \mathrm{~cm}$. At A, draw $\angle \mathrm{BAD}=$ $\left(180^{\circ}-135^{\circ}\right)=45^{\circ}$ and cut off $\mathrm{AD}=5 \mathrm{~cm}$. Join DC. ABCD is the required rhombus. Join AC and extend it on both sides.
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDA}$, we have

$$
\begin{aligned}
\mathrm{AB} & =\mathrm{CD} \\
\mathrm{BC} & =\mathrm{DA} \\
\angle \mathrm{ABC} & =\angle \mathrm{CDA} \\
\therefore \quad \triangle \mathrm{ABC} & \sim \Delta \mathrm{CDA} \quad[\mathrm{SAS}]
\end{aligned}
$$

Hence, $A C$ is a line of symmetry of rhombus ABCD. Similarly, join BD and BD is also a line of symmetry of rhombus ABCD.
Hence, AC and BD are two lines of symmetry of rhombus
ABCD.
2. Use graph paper for this question. Plot the points
$A(-2,4), B(2,1)$ and $C(-6,1)$.
(i) Draw the line of symmetry of $\triangle \mathrm{ABC}$.
(ii) Mark the point D, if the line in (i) and the line $B C$ are both lines of symmetry of quadrilateral ABDC . Write down the co-ordinates of point D .

STUDY•ASSESS • EXCEL
(iii) What kind of quadrilateral is figure ABDC ?
(iv) Write down the equations of BC and the line of symmetry named in (i).

Solution :

First plot the points $\mathrm{A}(-2,4), \mathrm{B}(2,1)$ and $\mathrm{C}(-6,1)$.
(i) $\mathrm{AC}=\sqrt{(-6+2)^{2}+(1-4)^{2}}=\sqrt{16+9}=5$ units
$\mathrm{AB}=\sqrt{(2+2)^{2}+(1-4)^{2}}=\sqrt{16+9}=5$ units
$\mathrm{BC}=\sqrt{(-6+2)^{2}+(1-1)^{2}}=\sqrt{64}=8$ units
$\therefore \quad \triangle \mathrm{ABC}$ is isosceles.
Clearly E is the mid-point of BC.
So, AE is the bisector of $\angle \mathrm{A}$.
$\therefore \quad \mathrm{AE}$ is the line of symmetry of $\triangle \mathrm{ABC}$.
(ii) A is 3 units above from BC .
\therefore Image of A in the line $B C$ is point D which is 3 units below BC .
Clearly, co-ordinates of D are $(2,-2)$
(iii) $\mathrm{AD}=6$ units and $\mathrm{BC}=8$ units.

Thus, ABDC is a quadrilateral whose diagonals AD and BC are unequal and these diagonals are its lines of symmetry.
$\therefore \quad \mathrm{ABDC}$ is a rhombus.
(iv) BC is 1 unit above the x-axis.
\therefore Equation of BC is $y=1$.
AD is 2 units away from y -axis on left hand side.
$\therefore \quad$ Equation of AD is $x=-2$

STUDY•ASSESS•EXCEL
3. Prove that the angle bisectors of a triangle pass through the same point.
Solution :

Given : A triangle ABC in which bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ intersect at I.
To prove : IC bisects $\angle \mathrm{C}$.
Construction : Join IC and draw ID $\perp \mathrm{AB}$, IE $\perp \mathrm{BC}$ and IF $\perp \mathrm{AC}$. Proof :
$\because \quad$ I lies on bisector of $\angle A$.
$\therefore \quad \mathrm{I}$ is equidistant from AB and AC .

$$
\begin{equation*}
\Rightarrow \quad \mathrm{ID}=\mathrm{IF} \tag{i}
\end{equation*}
$$

$\because \quad$ I lies on bisector of $\angle \mathrm{B}$.
$\therefore \quad \mathrm{I}$ is equidistant from AB and BC .

$$
\begin{equation*}
\Rightarrow \quad \mathrm{ID}=\mathrm{IE} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have,

$$
\mathrm{IE}=\mathrm{IF}
$$

$\Rightarrow \mathrm{I}$ is equidistant from CA and CB .
\Rightarrow IC bisects $\angle \mathrm{C}$. Proved.
4. In a triangle $A B C$, find a point P which is equidistant from $A B$ and AC and also equidistant from B and C .
Solution

Since point P is equidistant from AB and AC .
$\therefore \quad \mathrm{P}$ lies on the bisector of $\angle \mathrm{A}$.
Also, P is equidistant from B and C .
$\therefore \quad \mathrm{P}$ lies on the right bisector of BC .
From (i) and (ii), we conclude that P is the point of intersection of bisector of $\angle \mathrm{A}$ and right bisector of BC.
So, to get the required point, draw bisector of $\angle \mathrm{A}$ and right bisector of BC.
The point of intersection of these two bisectors is the required point.
5. Construct an isosceles triangle ABC such that $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}$ $=A C=4 \mathrm{~cm}$. Bisect $\angle \mathrm{C}$ internally and mark a point P on this bisector such that $\mathrm{CP}=5 \mathrm{~cm}$. Find points Q and R which are 5 cm from P and also 5 cm from the line AB .
Solution : Steps of construction :

(i) Draw a line segment $A B=6 \mathrm{~cm}$.
(ii) With A as centre and radius equal to 4 cm , draw an arc.
(iii) With B as centre and radius equal to 4 cm , draw another arc, cutting the previous arc at C.
(iv) Join AC and BC.
(v) Draw angle bisector CP of $\angle \mathrm{C}$ such that $\mathrm{CP}=5 \mathrm{~cm}$.
(vi) Draw a line parallel to AB at a distance of 5 cm .
(vii) With P as centre and radius equal to 5 cm , draw two arcs, which cut the line drawn in (vi) at Q and R .
Q and R are the required points.
6. Using ruler and compasses only, draw a circle of radius 4 cm and mark two chords $A B$ and $A C$ of length 6 cm and 5 cm respectively.
(i) Construct the locus of points inside the circle that are equidistant from A and C. Prove your construction.
(ii) Construct the locus of points, inside the circle that are equidistant from AB and AC .
Solution : Steps of construction :

(i) Draw a circle of radius 4 cm .
(ii) Take any point A on the circumference of the circle. With A as centre and radius equal to 6 cm , draw an arc meeting the circle at B.
(iii) With A as centre and radius equal to 5 cm , draw an arc meeting the circle at C .
(iv) Join AB and AC.
(v) Draw the right bisector of AC.
(vi) Draw the bisector of $\angle \mathrm{BAC}$.

Proof : Take any point P on the right bisector of AC. Join AP and PC.

STUDY•ASSESS•EXCEL
In $\triangle \mathrm{AMP}$ and $\triangle \mathrm{CMP}$, we have
$A M=M C$
$\angle \mathrm{AMP}=\angle \mathrm{CMP}$
$\mathrm{PM}=\mathrm{PM}$
$\therefore \quad \triangle \mathrm{APM} \cong \triangle \mathrm{CPM}$
$\Rightarrow \quad A P=C P$
[By construction]
[Each 90]
[Common]
[SAS]
[cpct]
7. Draw a circle of radius 2 cm . Take a point P outside it. Without using the centre, draw two tangents to the circle from the point P.

Solution :

Steps of Construction :

1. Draw a circle of radius 2 cm .
2. Take a point P outside the circle and draw a secant PAB of the circle.
3. Produce BP to C such
 that $\mathrm{PC}=\mathrm{PA}$.
4. Draw a semi-circle with BC as a diameter.
5. Draw $\mathrm{DP} \perp \mathrm{CB}$, which cuts the semi-circle at D.
6. With P as centre and radius equal to PD, draw two arcs, which cut the circle at E and F.
7. Join PE and PF , which are the required tangents.
8. Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=4.5 \mathrm{~cm}$,
$\mathrm{BC}=7 \mathrm{~cm}$ and median $\mathrm{AD}=4 \mathrm{~cm}$. Draw the inscribed circle of the triangle.
Solution :

Steps of Construction :

1. Draw $\mathrm{BC}=7 \mathrm{~cm}$ and mark its mid-point as D .
2. With B as centre and radius equal to 4.5 cm , draw an arc.
3. With D as centre and radius equal to 4 cm , draw another arc, which cuts the previous arc at A .
4. Join $A B, A D$ and $A C$.

ABC is the required triangle.
5. Draw the angle bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$, which meet at I .
6. From I, draw IL \perp BC.
7. With I as centre and radius equal to IL, draw a circle, which touches the three sides of the triangle.
9. Draw a regular hexagon of side 4 cm . Inscribe a circle in it.

Solution :

Steps of construction :

1. Draw $\mathrm{AB}=4 \mathrm{~cm}$.
2. Draw $\angle \mathrm{ABC}=120^{\circ}$ and $\mathrm{BC}=4 \mathrm{~cm}$.
3. Draw $\angle \mathrm{BCD}=120^{\circ}$ and $\mathrm{CD}=4 \mathrm{~cm}$.
4. Draw $\angle \mathrm{CDE}=120^{\circ}$ and $\mathrm{DE}=4 \mathrm{~cm}$.
5. Draw $\angle \mathrm{DEF}=120^{\circ}$ and $\mathrm{EF}=4 \mathrm{~cm}$.
6. Join AF. ABCDEF is the required hexagon.
7. Draw the bisector of $\angle \mathrm{A}$ and $\angle \mathrm{B}$, which intersect each other at I.

8. Draw $\mathrm{IL} \perp \mathrm{AB}$.
9. With I as centre and radius as IL, draw a circle which touches all the sides of the hexagon.
10. Points $(3,0)$ and $(-1,0)$ are invariant points under reflection in the line L_{1}; points $(0,-3)$ and $(0,1)$ are invariant points on reflection in line L_{2}.
(i) Name the lines L_{1} and L_{2}.
(ii) Write down the images of points $\mathrm{P}(3,4)$ and $\mathrm{Q}(-5,-2)$ on reflection in L_{1}. Name the images as P^{\prime} and Q^{\prime} respectively.
(iii) Write down the images of P and Q on reflection in L_{2}. Name the images as $\mathrm{P}^{\prime \prime}$ and $\mathrm{Q}^{\prime \prime}$ respectively.
(iv) State or describe a single transformation that maps P^{\prime} onto $\mathrm{P}^{\prime \prime}$.

Solution.

(i) We know that $\mathrm{R}_{x}(x, y)=(x,-y)$
$\therefore \quad \mathrm{R}_{x}(3,0)=(3,0)$ and $\mathrm{R}_{x}(-1,0)=(-1,0)$
$\Rightarrow(3,0)$ and $(-1,0)$ are invariant points on reflection in the x-axis.
Hence, L_{1} is the x-axis.
We know that $\mathrm{R}_{y}(x, y)=(-x, y) \quad \therefore \mathrm{R}_{y}(0,-3)=(0,-3)$ and $\mathrm{R}_{\mathrm{y}}(0,1)=(0,1)$
$\Rightarrow(0,-3)$ and $(0,1)$ are invariant points on reflection in the y-axis.
Hence, L_{2} is the axis of y.
(ii) $\mathrm{R}_{\mathrm{x}}(x, y)=(x,-y)$
$\Rightarrow \mathrm{R}_{x}(3,4)=(3,-4)$ and $\mathrm{R}_{x}(-5,-2)=(-5,2)$
Hence, P^{\prime} and Q^{\prime} are $(3,-4)$ and $(-5,2)$ respectively.
(iii) $\mathrm{R}_{y}(x, y)=(-x, y)$
$\Rightarrow \mathrm{R}_{\mathrm{y}}(3,4)=(-3,4)$ and $\mathrm{Ry}(-5,-2)=(5,-2)$ Hence, $\mathrm{P}^{\prime \prime}$ and $\mathrm{Q}^{\prime \prime}$ are $(-3,4)$ and $(5,-2)$ respectively.

STUDY•ASSESS•EXCEL
(iv) We know that $\mathrm{R}_{0}(x, y)=(-x, y)$
$\therefore \quad \operatorname{Ro}(3,-4)=(-3,4)=\mathrm{P}^{\prime \prime}$
Hence, the single transformation that maps P^{\prime} to $\mathrm{P}^{\prime \prime}$ is the reflection in the origin.
11. Attempt this question on graph paper.
(i) Plot $A(3,2)$ and $B(5,4)$ on the graph paper. Take 10 small div. $=1$ unit on both axes.
(ii) Reflect A and B in the x-axis to A^{\prime} and B^{\prime} respectively. Plot these on the same graph paper.
(iii) Write down
(a) the geometrical name of the figure $\mathrm{ABB}^{\prime} \mathrm{A}^{\prime}$
(b) the measure of the angle ABB^{\prime}
(c) the image $A^{\prime \prime}$ of A, when A is reflected in the origin
(d) the single transformation that maps A^{\prime} to $\mathrm{A}^{\prime \prime}$.

Solution.

(i) and
(ii) See graph
(iii) (a) $\mathrm{ABB}^{\prime} \mathrm{A}^{\prime}$ is an isosceles trapezium.
(b) On the graph if AC be the perpendicular from A to BB^{\prime}, then $\mathrm{AC}=2, \mathrm{BC}=2$ and $\angle \mathrm{ACB}=90^{\circ}$, hence $\angle \mathrm{ABC}$ is angle of the isosceles right angled triangle ABC .
Hence, $\mathrm{ABB}^{\prime}=45^{\circ}$.
(c) $\mathrm{A}^{\prime \prime}$ is $(-3,-2)$
(d) A^{\prime} on the reflection in y-axis would be mapped at $\mathrm{A}^{\prime \prime}$.
12. The point $\mathrm{P}(3,4)$ is reflected to P^{\prime} in the x-axis and O^{\prime} is the image of O (the origin) when reflected in the line PP^{\prime}. Using graph paper, give :
(i) The co-ordinates of P^{\prime} and O^{\prime}.
(ii) The lengths of the segments PP^{\prime} and OO^{\prime}.
(iii) The perimeter of the quadrilateral $\mathrm{POP}^{\prime} \mathrm{O}^{\prime}$.
(iv) The geometrical name of the figure $\mathrm{POP}^{\prime} \mathrm{O}^{\prime}$.

Solution.
(i) Since P^{\prime} is the image of P in the x-axis, the co-ordinate of P^{\prime} are $(3,-4)$.
As O^{\prime} is the image of O (origin) in the line PP^{\prime}, the coordinates of O^{\prime} are $(6,0)$.
(ii) Using graph, we find that length of segment $\mathrm{PP}^{\prime}=8$ units, length of segment $\mathrm{OO}^{\prime}=6$ units. .
(iii) $\mathrm{OM}=3$ units, $\mathrm{MP}=4$ units.

From right angled $\triangle \mathrm{OMP}$, by Pythagoras theorem, we get

$$
\mathrm{OP}^{2}=\mathrm{OM}^{2}+\mathrm{MP}^{2}=3^{2}+4^{2}=25
$$

$\Rightarrow \quad O P \quad=5$ units
Similarly, $\quad \mathrm{OP}^{\prime}=\mathrm{O}^{\prime} \mathrm{P}^{\prime}=\mathrm{O}^{\prime} \mathrm{P}=5$ units.
$\therefore \quad$ Perimeter of the quadrilateral $\mathrm{POP}^{\prime} \mathrm{O}^{\prime}$

$$
=(5+5+5+5) \text { units }=20 \text { units. }
$$

(iv) $\mathrm{POP}^{\prime} \mathrm{O}^{\prime}$ is a rhombus.
13. Use graph paper for this question.
(i) The point $\mathrm{P}(6,5)$ is reflected in the line parallel to y-axis at a distance of 4 units on the positive side of the x-axis. P^{\prime} is the image. Plot it and find its coordinates.
(ii) The point P^{\prime} is mapped onto $\mathrm{P}^{\prime \prime}$ on reflection in the x-axis.
(iii) $\mathrm{P}^{\prime \prime \prime}$ is the image of $\mathrm{P}^{\prime \prime}$ when reflected in the origin. Find the coordinates of $\mathrm{P}^{\prime \prime \prime}$.
(iv) Name the geometric figure $\mathrm{P}^{\prime} \mathrm{P}^{\prime \prime} \mathrm{P}^{\prime \prime \prime}$ and find its area.

Solution.
(i) We know that the image of the point $\mathrm{P}(x, y)$ in the line parallel to y-axis at a distance of a from the x-axis (i.e., $x=a)$ is the point $\mathrm{P}^{\prime}(-x+2 a, y)$, if the line is taken on the positive side of x-axis.
\therefore Coordinates of P^{\prime} are $(-6+8,5)$ i.e., $(2,5)$.
(ii) We know that $\mathrm{R}_{x}(x, y)=(x,-y)$
$\therefore \quad \mathrm{R}_{x}(2,5)=(2,-5)$
i.e., coordinates of $\mathrm{P}^{\prime \prime}$ are $(2,-5)$.
(iii) We know that $\mathrm{R}_{0}(x, y)=(-x,-y)$
$\therefore \quad \mathrm{R}_{0}(2,-5)=(-2,5)$
i.e., coordinates of $\mathrm{P}^{\prime \prime \prime}$ are $(-2,5)$.
(iv) $\mathrm{P}^{\prime} \mathrm{P}^{\prime \prime} \mathrm{P}^{\prime \prime \prime}$ is a right angled triangle, right angled at P^{\prime}.
: EqULABZ

- INTERNATIONAL

$$
\begin{aligned}
\text { Area of } \mathrm{DP}^{\prime} \mathrm{P}^{\prime \prime} \mathrm{P}^{\prime \prime \prime} & =\frac{1}{2} \times \mathrm{P}^{\prime} \mathrm{P}^{\prime \prime} \times \mathrm{P}^{\prime} \mathrm{P}^{\prime \prime \prime} \\
& =\frac{1}{2} \times 10 \times 4 \text { sq. units }
\end{aligned}
$$

$$
=20 \text { sq. units. }
$$

